
AD-A122 492 DATABASE AND TERMINAL MANAGEMENT FUNCTIONAL DESIGN 1.

ECIFICATIONS IN sU)PP..U) NAVAL POSTGRADUATE SCHODL

MONTEREY CA J N REINHART ET AL. JUN 82

UNCLASSIFIED F/G 9/2 NL

mommmmmmmu
mhEmhhhhhEEEEI
Ell/inn/EEl/EE
EnlnnEllEinilE
EEEElllllllllE
llElllllllhil

112. J2

.1 DI1 1.8

1 1111B 1.4 11.6

MR Fl P.- 10 1 1 L 1T1, I =f

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
DATABASE AND TERMINAL MANAGEMENT

FUNCTIONAL DESIGN SPECIFICATIONS IN
SUPPORT OF STOCK POINT LOGISTICS INTEGRATED

COMMUNICATION ENVIRONMENT (SPLICE)

by

Joseph N. Reinhart III

and

Ricardo Arana

~June 1982

Thesis Advisor: N. F. Schneidewind

Approved for public release, distribution unlimite

' •

"2

UNCLASSIFIED
SECURITY, CLASSIICAION OF ?m"mS PaaE 3hof Case slnow".)

REPCET DOCUMENTATION PAGE BEOR RCADINST.% FOR
F WPRIT W4UME GOVT ACCESSION NO. 3 ReCIPIEmY-S CAVAL_3 k,,AgfQ

4 TITLE (0d SU~ifD.) S T'vNE OF nEWONT A ESoO,, coveftwO

Database and Terminal Management Func- Master's Thesis,
tional Design Specifications in Support June 1982
of Stock Point Logistics Integrated III 09psil OUCNGPP otmotr wwt

9 PERFORMING ONG&NIZATION NAME AUG AOO.SIISS to.- PGAid F.cEmid .. OE-*A

Naval Postgraduate School
Monterey, California 93940

I' COuTWOLLING OFFICE NAME AMC ADORESS It 01POOT DAT

Nava Potgrduat ScoolJune 1982
Nava Posgradate choo 13 UNGER OF PACS

*Monterey, California 93940 109
4T- MooITOnlG AGECCY MNE & AOORESS041 Edi@.mi 6 Ie Cfreiouj office) 1. SE9CURITY CLASS. (oft1 s l de , rt

Unclassified
IS. OECLASSIVICATIO%, OOONGRADING

SCHEDOULE

Ia. DISTRIUION STATEMENT W. #0e0 flWpm

Approved for public release, distribution unlimited.

17. OISTRIOUTION STATEMENT (of the abefrot ae.eod ,um 8104ft 30. It diIle..,e Pft R.eor)

15. SUPPILCMENTAXYI NOTES

IV. Ka EvWailaiS (Caftuow an .e. gEE. it mosefo~mE end ~11i or We*& .eih)

Distributed System(s) Data Base Management System(s)
Terminal Management Stock Point Logistics Integrated
Local Area Network Communication Environment
SPLIC,

so. AnI17MdtCT (Ca*nif"" am W CUE." old*i n.*a""" a" lawfii &V &I"& m~

As a result of the growing demands for Automated Data
Processing at the Navy Stock Points and Inventory Control
Points, long range plans are being developed around the
Stock Point Logistics Interf ace Communications Environment
(SPLICE) concept. This thesis examines the initial design
and implementation of the SPLICE Local Area Network (LAN)
as proposed by NAVSUP and FMSO, and provides an alternative

DO ~~ 1473 ~ ~ ~ UNCLASSIFIED PG USDe WE

SUCUNITY CI.AMIfICATIOW OF TNIS AE(tf osotee

UNCLASSIFIED
eu~" Cs a~gm~~aY'@USe 9.1 Ul66f nefe safe"#

20. ABSTRACT (continued)

design and implementation strategy. The alternative design
and implementation strategy recommended by this thesis is
designed to provide a fully distributed architecture for a
Local Area Network and, in particular, the Terminal and
Data Base Management components.

DD Forra 1473 2UNCLASSIFIED

SN01020f14-6601 61WU1g'gLV96&MOAVION OP?oi C f~e Dt

Approved for public release, distribution unlimited.

Database and Terminal Management Functional Design
Specifications in Support of Stock Point Logistics

Integrated Communication Environment (SPLICE)

by

Joseph N. Reinhart, III
Lieutenant, United States Marine Corps

B.S., U.S. Naval Academy, 1977

and

Ricardo Arana
Lieutenant, Peruvian Navy

B.S., Peruvian Naval Academy, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
June 1982

Authors ' .z 'e

Approved by:_________________ _____

" """ - <---lis--s AdVlsor

Dean of Information and Policy Sciencc

3

ABSTRACT

As a result of the growing demands for Automated Data

Processing at the Navy Stock Points and Inventory Control

Points, long range plans are being developed around the

Stock Point Logistics Interface Communications Environment

(SPLICE) concept. This thesis examines the initial design

and implementation of the SPLICE Local Area Network (LAN)

as proposed by NAVSUP and FMSO, and provides an alternative

design and implementation strategy. The alternative design

and implementation strategy recommended by this thesis is

designed to provide a fully distributed architecture for a

Local Area Network and, in particular, the Terminal and Data

Base Management components.

44

TABLE OF CONTENTS

I. INTRODUCTION-- 8

A. BACKGROUND-- 8

B. OBJECTIVES OF RESEARCH------------------------------ 11

C. PROPOSED NAVSUP IMPLEMENTATION--------------------- 11

D. RECOMMENDED SPLICE FUNCTIONAL IMPLEMENTATION -------244

E. SUMMARY-- 33

II. SESSION SERVICES AND TRANSPORT SUBSYSTEM-------------- 36

A. TRANSPORT SUBSYSTEM--------------------------------- 36

B. SESSION SERVICES------------------------------------317

1. Naming and Transparency------------------------3

2. Session Services Subsystem--------------------- 43

III. DATABASE AND TERMINAL MANAGEMENT FUNCTIONS------------- 55

A. OVERVIEW--- 55

B. RECOMMENDED USE OF DBMS SOFTWARE------------------- 56

1. Introduction------------------------------------ 56

2. DBMS Subsystem---------------------------------- 57

C. TERMINAL M1ANAGEMENT FUNCTIONAL
IMPLEMENTATION--------------------------------------- 65

D. BACK-UP AND RECOVERY-------------------------------- 77

IV. CONCLUSIONS AND RECOMMENDATIONS------------------------ 88

A. CONCLUSIONS--388

B. RECOMMENDATIONS------------------------------------- 90

APPENDIX A: LOCAL AREA NETWORK(HIPO-DOCUMENTATION---------- 91

5

LIST OF REFERENCES-- 105

INITIAL DISTRIBUTION LIST------------------------------------ 107

LIST OF FIGURES

1.1 Projects Under SPLICE Umbrella ----------------------- 9

1.2 SPLICE Software Functions---------------------------- 13

1.3 Possible Implementation of LAN Functions ------------- 25

1.4 Functional LAN Resource Layered Architecture --------- 28

2.1 Resource Directory Table----------------------------- 41

2.2 General LAN Control Message Format ------------------- 49

2.3 Functional Resource Processor Configuration ----------- 51

2.4 Decentralized Message Format ------------------------- 54

3.1 General DBMS Component Tools ------------------------- 62

3.2 Virtual Terminal Controller -------------------------- 68

3.3 Logical and Physical Screen Configuration ------------ 71

3.4 Generic Terminal Transformation Table ---------------- 74

3.5 Example LAN Functional Resource Implementation ------- 79

7

I. INTRODUCTION

A. BACKGROUND

Stock Point Logistics Integrated Communication Environment

(SPLICE) is designed to augment the existing Navy Stock Point

and Inventory Control Point ADP facilities which support the

Uniform Automated Data Processing System--Stock Points

(UADPS-SP). The hardware for the UADPS-SP consists of the

Burroughs Medium Size (B-3500/3700/4700/4800) Systems. At

present there are twenty new application systems being devel-

oped, as shown in Figure 1.1, which will require considerable

interactive and telecommunication support. The current

UADPS-SP cannot support these requirements without a total

redesign effort and will probably require future replacement

of the current mainframes. At present, individual project

managers are developing the new application systems utilizing

a variety of minicomputers which are capable of supporting

the required interactive and telecommunications capabilities.

This is being done due to the near term needs of the Navy and

are scheduled to be implemented within the next four to five

years.

There are two driving forces behind the development of

SPLICE. First, there is the increased need for the use of

CRT display terminals to interact with application logic and

8

ACRONYM TITLE

APadE Automation of Procurement and Accounting Data

Entry

CAB Centralized Accounting and Billing

CLAi4P Closed Loop Aeronautical Management Program

CS Current Supply

DOSS Disk Oriented Supply System

E&F E&F TO Disk-Financial Improvement Project

FAMMS Fixed Allowance Management and Monitoring
System

ICP Inventory Control Points

IDA Integrated Disbursing and Accounting

MAPS Multiple Activity Processing System
(Satellite Processing)

MISIL Management Information System International
Logistics

NATDS Navy Automated Transportation Data System

NAVADS Navy Automated Transportation Documentaticn
System

NAVSCIPS Navy Standard Civilian Payroll System

OLA On Line Autodin

OPTAR Operating Target Accounting (TRIDENT)

RIP Receipt Improvement Project

LDS TRIDENT Submarine Logistics Data System

TOPS Transportation Operational Personal Property
Standards

RM & ME Requ: .or initoring and Material Expediting

Figure 1.1 Projects Under SPLICE Umbrella

9

to fetc.h icmat.i. zrcr t,. Zst-... data ase. c ,

there is the need to standardize the multitude of interfaces

currently existing across approximately sixty supply sites.

Centralization of standard processors is desired to help

reduce the overall costs of the SPLICE system in terms of

processor support, the needed controlled environments and

access control. Since the implementation plans have not yet

been developed, the SPLICE processors are perceived to be

co-located with the Host Burroughs system at each Navy Stock

Point (SP) and with the Burroughs and Univac systems at the

Inventory Control Points (ICPs).

SPLICE will provide economical and responsive support cap-

abilities for a decentralized telecommunications environment.

A "foreground/background" concept will be implemented with

SPLICE minicomputers, which will serve as a front-end-prccessor

for the Burroughs Systems via a Local Computer Network (LCN)

interface. The term "Local Computer Network" (LCN) is a term

used in the NAVSUP and FMSO documentation, but will be referred

to as a Local Area Network (LAN) for the remainder of this

thesis. The Burroughs will provide background processing

functions for large file processing and report generation

(Ref. 1]. In order to provide for greater software and hard-

ware maintainability, SPLICE will be developed independently

of the Burroughs systems using a standard set of minicomputer

hardware and software. This is particularly important when

considering the fact that SPLICE will be implemented at some

10

sixty different geographical locacions, each i;aving a differen:

mix of application and terminal requirements.

B. OBJECTIVES OF RESEARCH

The objectives of the SPLICE project at the Naval Post-

graduate School, Monterey, California, is to develop alterna-

tives for SPLICE Local Area Networks. This thesis particularly

concerns itself with the development of functional design

specifications for the implementation of the Zata Base and

Terminal Management aspects of a functionally distributed

Local Area Network in response to the requirements of the Naval

Supply Systems Stock Points and Inventory Control Points.

C. PROPOSED NAVSUP IMPLEMENTATION

This section represents the implementation concepts as

developed by NAVSUP and FMSO, and not those of the authors of

this thesis. The information contained in this section was

obtained from a series of reference documents obtained from

NAVSUP and FMSO, and is included for background information

only.

In terms of Terminal and Data Base Management, the SPLICE

processor software will consist of the following "off the

shelf" capabilities to be included with the delivery of the

SPLICE hardware: Operating System, Processor to Processor

interfaces, File Management System, Command Interpreter, Cobol

Compiler, Performance Monitor, Report Writer and a Debug

Facility. Other SPLICE software requirements will be fulfilled

11

L': either Ae erm~n±i i ana =,ent or ex ieral :*anaaez-en:

components on the Local Area Nletwork as proposed by this

thesis.

The Cperating System, which would be provided by the

vendor, will include the following features: multiprogram.ming/

multitasking management, memory management, priority interrupt

recognition and scheduling, resource allocation, program to

program message management, autcmatic rerouting of IiO in the

event of a failure and reassigrment of processes in the event

of CPU failure. The requirement of automatic rerouting cf 1/O

and reassignment of processes in the event of a CPU failure is

applicable for stated SPLICE high reliability requirements.

These recuirements become apparent in considering Figure 1.2

which was taken from the SPLICE Software Design documentaticn

of 19 March 1979. This figure is representative of NAVSUP's

proposed concept of the SPLICE architecture.

The Processor to Processor interface manager is required

to provide high speed, fault tolerant ccmmunication between

processors on the SPLICE complex. It is designed to provide

support for program to program message traffic, the use of

shared database accesses and control information in support

of user process migration from one processor to another with-

out the need for knowledge of the processes residence within

the SPLICE complex.

The file management system for SPLICE will provide device

independent interface between I/O, the Operating System and

12

..rocessiiiy ,rcgrams. The file managemrent systen -::s e

capable of supporting multi-volume files, shadow volumes and

volume back-up and restoration functions. It must be capable

of providing record level lockout and multiple accesses to

files for multiple users. In addition, support capabilities

for variable and fixed length record formats must be provided,

while the actual location of the data is transparent to the

individual user program.

Stock Point
Input Host- Host

Resident D.B.
Support

BACKGROUND

FOREGROUND

Stock Point
Front End

Processor
Terminal [Support Daa Set

Oriented Manage-

Process.,Co p e m n t

Bath Management Console
Process. Periph.

aManage-
tment

Terminal
Manage-
ment

Figure 1.2 SPLICE Software Functions.

13

Scommand interzret . t cc -:.- for :

interface to the SPLICE system complex. The capability must

be available from a program module in addition to independent

command language interfacing between the user's and the SPLICE

system complex. In order to provide for the operational ccn-

trol of the SPLICE complex, while permitting multiple user

implementation of command functions, it is necessary for at

least two levels of security to be provided: primary- system

operator control and system user control. The editor should

provide the capabilities to create and update user files and

should be capable of operating in an interactive mode with the

terminals attached to the LAN.

An ANSI 74 Cobol standard is scheduled to be implemented

across all SPLICE complexes. In addition to the required

ANSI 74 Cobol standard, an appropriate high level program.

development language and debug aid are required for user pro-

gram development. The high level program development language

is required to be either PASCAL or a vendor oriented ALGOL-like

compiler and must meet the minimum levels required to support

the Terminal Application Processing System (TAPS), currently

being used at various Navy Stock Points. TAPS, if used, is

designed to provide both the terminal and database management

requirements for SPLICE. In addition to the above, a report

writer capability is specified, and if it is other than RPG II,

a conversion program must be provided. [Ref. 11.

14

The centra *tnd .

of these functions conc,'mns the Complex Management Component

(CMC) of the TAPS system. The CMC coordinates message traffic

between the background Burroughs and the foreground terminals,

and the allocation of SPLICE resources to include Peripheral

Management, Data Set Management, Terminal Oriented and Batch

processing, and the SPLICE Complex Operator Console. :n addi-

tion to maintaining status information on foreground and back-

ground processes, the CMC uses a Postmaster Component (PC)

which is controlled by the CMC. The PC is called into main

memory by the CMC and is used to post messages/records to the

Mail Box Storage (MBS) facility. The MBS facility is used by

the CMC to temporarily store non-interactive messages destined

for the off-line processors and non-interactive responses from

a host destined for terminals. [Refs. 1, 2, 31.

There are eight software functions which have been defined

for development in order to support the SPLICE concept in addi-

tion to the above stated processor software capabilities. The

eight software functions are: Terminal Management, Terminal

Applications, Data Set Management, Peripheral Management,

Batch Applications, Complex Management, Stock Pcint Front-End-

Processor support, and Stock Point Host-Resident support.

Each of these functions operate under the control of the Com-

plex Management function, thus providing for a tightly coupled

system design. The first six functions are used to provide an

application independent environment for LAN processing.

15

711e last twc =unCtions a:- use . - _._=n

Host interface for foreground/background communication. It

must be recognized that the entire SPLICE concept, as pre-

sented in the SPLICE System Specifications (Phase I), 2 Feb

1981, and Software Design, 19 March 1979, revolves around a

predetermined desire to use TAPS, which is marketed by the

Decision Strategy Corporation. The actual implementation

characteristics of TAPS can be found in the appropriate

vendor documentation.

The TAPS software consists of two major functions which

are used to support terminal application functions: process-

ing support and data base management. Terminal applicaticn

functions concern three general areas: Terminal Criented

Processing, Terminal Data Base Management, and Data Collec-

tion. The processing support keeps track of process status

information for each terminal, while providing the needed

terminal interface requirements particular to individual

terminal characteristics. In addition, the TAPS Data Manager

(TAPS/DM), provides predefined modules which can be accessed

by terminal users without requiring predefined access modules.

TAPS maintains the independence of the terminal user and

application program from the physical data structure. This

is accomplished through the use of the Application Manager

(TAPS/AM) which passes predefined transactions to either the

command processor, where data retrieval is managed, or to the

screen phases defined by the application programmer.

16

information frcm the display screen or the data base, only

specific data fields are presented.

The Terminal Manager is responsible for supporting a

variety of terminals on the system, and interfacing the data

to the system in a standard format. The Terminal Manager uses

system tables to control the terminal interfaces with as little

operator and application program intervention as pcssible.

Output queuing and frame management will be provided according

to the type of data being managed. Functions, such as opening

a terminal at a predefined time and automatically retrying and

timeouts, will be implemented. A set of terminal queues will

also be available for output. Parameter tables, frcm the en-

vironment file, will be used to initialize the control struc-

tures for terminal management, to validate terminal access

rights, and to control data manipulation.

The configuration table will identify the communication

lines attached to the processor. The unique id of each end

point associated with the line will be specified, unless the

line is of the dial up variety. The configuration table will

provide a security restriction for a line which would override

the security restriction specified for a unique-id. Automatic

communication control will be extended to monitoring terminal

usage and directing data to alternative paths. An option to

log off terminals which have not been active within a specified

time period is to be available. Thus, output directed to one

17

terminal during prime time may he directed to a 'iferent

terminal on an off shift. Values from the unique-id table

are to be used in the building of the terminal work area at

initialization and during connection of dial-up lines. The

unique-id entry defines the specific hardware unit in terms

of communication management and functional usage. A line

connection validation is to be performed for dial-up lines.

The log-on options will vary according to the type of

terminal or processor present. The user must provide a user-

id and password which will be validated against a user-id

table. The characteristics from the terminal's work area will

define what processes are allowed from that terminal. The

system-id to which the user requests access will indicate what

function is desired and the system-id table will provide the

mask for the functional type.

Most terminals will operate in either a message mode or a

stream mode. In the message mode, each input and output is

independent of the other message traffic for the terminal.

In the stream mode, all input is directed to a specific des-

tination and only output from that destination will be returned

to the terminal. Output from any other origin will be queued

for later delivery.

Each communication end-point will have a process id asso-

ciated with its input. Terminals will be pointed to the oper-

ator interface until they are successfully logged-on to the

LAN. The term "end-point" as used here represents a particular

18

user terminai. The icg-on rroceaure wi.L ncr c. ai± cause :ne

process-id pointer to be changed so that all further input

from the end-point is routed directly to the desired process.

Since a display device is both an input and an output medium,

there must be coordination between the user's input and the

system's output. How the data is to be processed, and what

responses will be generated, affect the options the user has

available, and what must be done by the system to properly

manage the output. If the processing function does not require

a specific screen management, the user may request a mode which

best fits the operations being performed. The following dis-

play modes are available to be used: line, edit (roll down

input top), and frame. Forms mode is used to control user

input and differentiate between protected and unprotected data.

A terminal operating in forms mode uses control codes to separ-

ate a screen into fields of protected and unprotected data.

Protected data cannot be altered by the user while unprotected

fields are available for entry or update terminals which only

send and receive data in the unprotected fields.

The Stock Point system supports the forms mode of opera-

tion with separate frame and data management. A frame is

transmitted to the terminal to provide a format for input

and/or output. The data associated with the frame is then

treated as independent messages. Only the identity of the

frame is appended. Rather than wait for a response, the user

may want to use the terminal for other transactions. When the

19

before the output data is transmitted to the terminal.

The separation of data from the constant information

enables the system to reduce the amount of network traffic

by managing the frames at the point where the terminals enter

the system. The frames manager must keep track of the frame

currently in use by a display device. The formatting of the

screen changes are done at the origin, not the destination.

The different characteristics of processing within the system

necessitate different forms of output management. Terminals

operating in an interactive mode require rapid response time

with little or no need to retain an image of the data trans-

mitted; terminal queuing for this mode of operation would be

unnecessary because the terminal operator is waiting to receive

the data.

Three levels of output queue management have been defined:

backlog, restricted and retention queues. The first two queue

types share the same file structure and are linked back and

forth, depending upon the status of the terminal and the user

control. The restricted queue is to be indexed by user-id,

urique-id, and originating (return) process. Records in this

queue may be accessed by inquiries through the operator inter-

face or they may be output by relinking tc the backlog manage-

ment, also done t hrough the operator interface. A message

linkage procedure will be required to gather parts from the

same creator and to insure that all parts are present in the

20

. y, contrast, is tc be

built sequentially and retained until system maintenance.

Batch output, destined for a terminal, will reside on

disk until requested by the terminal operator or scheduled

by the system. The format of the data will depend upon the

origin. Batch output received over the network will be stored

as compacted file segments. The presence and type of data

will be noted in the file directory. Batch output destined

for a terminal is considered restricted data regardless of

the mode of the terminal. Only one batch file may be output

at a time. When a file is scheduled for output, the appropriate

service routine will be called to access disk, format the data

and pass the image for transmission. Batch input from the

terminals may be managed by TAPS or the editor, software pack-

age depending upon the functions and destination desired.

Validation and editing functions should be associated with key

entry terminals.

Terminal Data Base Management is performed through TAPS/'

DM in support of disk files on the SPLICE processors. This is

accomplished by means of the parameterized interfacing of the

TAPS/AM with TAPS/DM. This permits user queries to the data

base without the need for COBOL application programs, although

COBOL module interfaces to TAPS/DM via the TAPS/AM are supported.

As recognized in the SPLICE Software Design documentation of

19 March 1979, TAPS/DM only manages one open file at a time.

Since the concurrent use of multiple files by application

21

.u i r :PS must have the ability tc back-out

and/or restart a process if the entire process cannot be com-

pleted. The software design problems imposed by the single

file support of TAPS can be overcome by using the Variable

Indexed Sequential Access Method (VISAM) modules used by TAPS/

DM for non-primary files. The restricting factor for using

the VISAM methods, under TAPS/CM, is that the application

programmer must know the exact data structure of the files

and must perform specified procedures in a specified order.

The result is a lack of program independence from actual file

data structures. Once a data structure is modified, the cor-

responding corrections must be made to the respective applica-

tion programs and then recompiled. Increased software

maintenance and a decrease in program flexibility and respon-

siveness will result.

The final area of consideration under Terminal Application

functions is data collection. The data collection function,

known as data set management, is needed to support batch pro-

cessing on either the background Burroughs systems or on the

foreground Local Area Network. Data collection will include

data element validation and batch naming considerations. The

need for unique identification, UID, of multiple batch data

generated from a process and received by TAPS at different

times, must be provided. This provides the capability of

having multiple batches of data which can be separately main-

tained, yet all classified under one generic file name.

22

Data Set Management, as used in SPLICE, concerns the man-

agement of batch files which are to be used either inside or

outside of the local system. This is designed to be performed

by the Data Management Transfer component which will use two

basic control files within the Data Management Subsystem: a

single File Directory and a single Environment File. The File

Directory will be used to keep track of individual data sets,

which are identified as file segments, while the Environment

File provides predefined parameters for the processing of the

logical files. The data sets are maintained in ancestor order

within a logical file. Modification of a file is designed to

be controlled through the Complex Manager which updates the

File Directory and which may result in further processing of

the file to reflect the desired modification. All control

information concerning the output medium, or number of copies,

are present at the logical file level and, if none exist,

then the first controls encountered for the logical file are

inserted in the File Directory.

Batch files used inside of the LAN concern both user batch

applications and system batch functions such as the transmis-

sion of batch print and card files to and from the peripheral

manager. The areas of concern for batch applications include

compaction, decompaction and disk management of batch files and

file segments. The extent to which compaction logic is per-

formed on batch files is dependent upon the control parameters

associated with the batch file and possibly upon its destination.

23

As is the case for scme print messages and files destined for

the Burroughs TC500/3500 terminals using the SPPROD program,

horizontal compaction is required, while for other types of

peripheral devices compaction is neither required nor desired.

Decompaction of files would simply be performed by attainment

of file structure control information at the destination and

the subsequent restructuring of the data in accordance with

the specified control information. Disk management of batch

files should provide for the maintenance of transient files

and the allocation of disk space while maintaining unique file

names similar to that described under Data Set Management.

D. RECOMMENDED SPLICE FUNCTIONAL IMPLEMENTATION

This section represents the issues identified in the func-

tional implementation of a Local Area Network by the authors,

and not necessarily those of NAVSUP. It should be recognized

that this section is general in nature and is not intended to

include all considerations necessary to fully implement

Terminal and Data Base Management functions on a LAN.

In attempting to identify the functional Data Base and

Terminal Management requirements for the SPLICE LAN, the

issues of a fully distributed versus a partially distributed,

and the need for, or lack thereof, applications programs in

support of Naval Supply requirements was first considered.

NAVSUP depends highly upon the use of application programs,

identified in Figure 1.1, to perform data entry and verification,

24

retrieval, updates and organizational and financial accounting

functions, just to name a few. [Refs. 3, 4].

In considering the use of a fully versus partially dis-

tributed LAN, the initial functional design basically su.pcrts

a fully distributed network based upon four primary functional

LAN resources. The functional SPLICE LAN resources are iden-

titied as the Front End Manager, Terminal Manager, Data Base

Manager and Peripheral Manager. A possible implementation of

these functional LAN resources is depicted in Figure 1.2, but

by no means represents their only implementation.

FRONT END ----> ERINLS DAABASE
PROC. -MANIAGEMENT

LAN BUS

TERMINAL PERIPHERAL
MANAGEMENT MANAGEMENT

Figure 1.3 Possible Implementation of LAN Functions.

This decision was made in an attempt to provide the

greatest degree of functional specification, with a layered

approach, without becoming unmanageable. In this respect,

the Data Base and Terminal Manager, as are the other LAN

functional resources, considered to be implemented at various

25

nodes on the LAN. In so doing, the LAN should be able to

achieve the greatest degree of parallel prccessing possible.

Later designs may require the combining of multiple LAN re-

sources at various nodes due to cost, user response and LA'

load considerations. The Terminal Management and Data Base

Management implementations are based upon the ISO OSI Refer-

ence model, in particular, layers 4 through 7. if desired,

the combining of multiple LAN functional resources should be

somewhat simplified.

The two primary problems encountered in the design of a

fully distributed system were the need for maintaining the

physical independence of each functional resource from the

node upon which it is implemented and control of the execution

of user requirements in a direct, or indirect, secuential

manner. The physical independence of functional resources is

considered in Chapter I, Section B.l, Physical Naming and

Transparency Considerations, while the sequential control of

user requirements is considered in Chapter II, Section B.2,

the Session Services Subsystem of the LAN. If the physical

independence of the functional resources is not maintained,

future growth of the LAN and its operation in a partially

failed state will become difficult, or impossible.

To say that the approach to the functional implementation

of the LAN resources is "basically" fully distributed, is in

reference to the Operating System which would support the lay-

ered architecture of the LAN functional resources. This thesis

26

does not consider the use of a fully distributed Cperating

System in suppcrt of the individual LAN functional resources

primarily due to the scarcity of such products. Another con-

sideration is that of overall LAN flexibility in providing

for the expansion, or possible contraction, of the LAN as the

organizational requirements change. By use of a generalized,

vendor supplied, Cperating System in support of each LANl

functional resource, the hardware and its respective Operating

System could be replaced without requiring extensive modifica-

tion of the LAN functional resource itself. By providing well

defined interfaces between the Transport Subsystem, Session

Services Su bsystem and the Functional Resource Subsystem,

only the interfaces need be modified when modifying or replac-

ing the initial operating system and/or hardware. In this

sense, each of the three primary subsystems of the DBMS and

Terminal Manager could be treated as separate processes by the

resident O.S., although the Transport Subsystem may be imple-

mented as a separate hardware component. Interrupt handling

and processor time allocation to both the Session Services

and DEMS or Terminal Management Subsystems would be provided,

and could be somewhat tailored to meet operational require-

ments, at each node supporting a LAN functional resource

without a high degree of dependence upon the particular Oper-

ating System used.

The layered structure of each LAN functional resource is

depicted in Figure 1.4. The Operating System, Transport

27

Subsystem and Session Services Subsystem are fully duplicated

images of each other. The performance of one system/subsystem

at one node/LAN resource is a mirror image of the same sub-

system operating at another node/LAN resource under the same

environmental conditions.

TRANSPORT SUBSYSTEM

SESSION SERVICES SUBSYSTEM

DATA BASE
OR

TERMINAL MANAGEMENT
SUBSYSTEM

RESIDENT
OPERATING SYSTEM

Figure 1.4 Functional LAN Resource Layered Architecture.

In addition to the flexibility in growth, use of a gener-

alized Operating System also provides easy transition of

supporting functional resources in the event of a failed node.

This thesis promotes the use of duplicated functional resources

to provide for graceful degradation of the LAN. "If a system

depends upon all nodes being up, it is not a reliable system.

If proper back-ups and failsoft levels can be defined so that

the system is meaningfully operational with inoperative nodes,

a reliable system may be designed from collections of smaller

nodes" [Ref. 22]. Although this deals primarily with the

28

replication of hardware and software functions, there is a

great deal of difficulty in coordinating the use of replicated

functional resources to service each particular user while

ensuring the integrity of a duplicated data base. In order

to simplify these issues, this thesis proposes the acknowledge-

ment of a primary DB and Terminal Manager, which could service

the DB and Terminal requirements of all users, and a repli-

cated, but passive, secondary DB and Terminal Manager to be

used in the event the primary becomes inoperative. Regardless

of whether a particular distributed or generalized Operating

System is used to support the functional resources of the LAN,

the primary objective of the LAN is to provide a single logical

and comprehensive operating environment to the users of the LAN.

For primary and secondary functional resources, while the

primary functional resource is active, the secondary, or dup-

licated, functional resource would exist in a passive and

possibly inactive manner, at a separate node on the LAN. In

the event of a hard failure on the primary node, the secondary

functional resource would be made active, thus permitting con-

tinued support of organizational requirements in a partially

degraded mode. The use of a generalized operating system,

(GOS), at each node provides for simplified implementation and

effective transition of a functional LAN resource from one node

to another. It should be noted that, "Increased reliability

comes not from the replication per se of hardware units but

from systems designs that provide quick recovery while

29

guaranteeing integrity" [Ref. 221. The proposed method of

achieving this effective recovery state is discussed in the

section on Back-up and Recovery, and also addresses the need

for maintaining the concurrency of the primary and secondary

data bases.

In terms of interactive application programs, their use

is one which reflects more an organizational commitment,

rather than a technical and managerial constraint. It is

easy enough to conceive of eliminating application programs

in lieu of a flexible and naturally structured DB Query lang-

uage, which could perform data retrievals, inserts, deletions

and updates while utilizing a DBMS to provide graphics and

computational capabilities for the users of the SPLICE LAN.

If designed and implemented correctly, it is recognized that

the repetitive and sequential nature of application programs

provides a sense of organizational security in that the user

is restricted to the design constraints of the application

program being used. It is this restrictive quality of appli-

cation programs which often accounts for required program

modification and maintenance in order to institute unforeseen

user requirements or future desires. The feasibility and

flexibility of using a high level query language must be dem-

onstrated to the using organization in order to provide an

incentive for foregoing the further development of the proposed

SPLICE application programs.

30

I

In recognizing that considerable time, effort and capital

investments have already been made towards the development of

interactive SPLICE application programs, this thesis proposes

a methodology for their support within a functionally distrib-

uted LAN. In order to support interactive application pro-

grams on a functionally distributed LAN, it would be necessary

to utilize a Host Language Interface, supportive of an ANSI 74

Cobol standard, to translate application references to LAN

functional resources. The ability to recognize references to

LAN functional resources must be incorporated into the resident

Operating System at each node. This support would be provided

via the interaction of the Session Services Subsystem and the

resident Operating System at each node on the Local Area

Network.

Since the Session Services Subsystem provides the overall

coordinating mechanism in support of user requirements on the

LAN, once a user has been authorized access, application pro-

grams could be retrieved from the applications library and

assigned to any one of the LAN functional nodes via the crea-

tion of an appropriate user Controlling Session Service. By

identifying the user and the corresponding application program,

the Session Service Subsystem, via the user's Controlling

Session Service, would provide access to LAN resources by

passing messages between the application program and the

Session Services Subsystem. It should be noted that the appli-

cation, i.e., the user's application process, and the Controlling

31

Session Service would reside at the same node within the LA.,

and would be supported by that node's Session Services Sub-

system and Operating System. Program interrupts would be

handled by the resident operating system which would coordin-

ate the message exchanges between the application process and

the Session Service Subsystem, while providing Operating System

level diagnostics in the event of a failure of the applicaticn

process. Operating system diagnostic messages would first be

linked to the user's Controlling Session Service by the Session

Services Subsystem and relayed to the user via the Terminal

Manager for future user action.

In the absence of application programs, support of repeti-

tive data processing activities, in support of user require-

ments, can be achieved by use of previously developed command

files which could be stored and recalled, much like an appli-

cation program, from a user Command Library. Support of the

command files would be performed in the same manner by the

Session Services Subsystem as if the user had issued the series

of commands from their terminal. The concept of user command

files is described by J. D. Mooney [Ref. 171, and provides a

method of implementing previously defined, repetitive user

actions, thus freeing the user from the requirement of defin-

ing each desired action while permitting user interaction at

predefined points in the repetitive sequence. Through the

implementation of these concepts, it is possible to provide

initial support of application programs and additional user

32

query language capabilities while permitting a gradual tran-

sition to purely query based user processes.

E. SUMMARY

The scope of this thesis is oriented around the functional

design of the Terminal and Data Base Management components of

a Local Area Network (LAN), in support of the SPLICE project

at the Naval Postgraduate School, Monterey, California 93940.

The proposed NAVSUP implementation of SPLICE reflects a tightly

coupled architecture which utilizes a centralized "complex

manager" concept. The complex manager performs all required

coordination between the SPLICE system components, such'as

Terminal Management, Data Set Management, Peripheral Manage-

ment, Terminal Oriented processing and Batch processing com-

ponents. The recommended SPLICE functional design is directed

at eliminating the need for a complex manager by providing the

necessary control structures, transport and Session Services

Subsystems, for a fully distributed Local Area Network. The

recommended SPLICE implementation is based upon the basic

design requirements as cited in the SPLICE documents provided

by NAVSUP and FMSO, and is not intended to resolve all of the

considerations necessary for full implementation.

The greatest distinction between NAVSUP's proposed imple-

mentation and that of the authors is the elimination of a

centralized complex manager. The elimination of the complex

management component of the LAN is supported by the use of

33

standardized transport and session services subsystems. These

subsystems, along with an appropriate protocol, provides for

the coordination of LAN functional resource components in

support of user queries. The session services and the trans-

port subsystems are covered in Chapter II of this thesis and

are designed to support one or more functional resources

located at a particular node on the LAN. There are two types

of data used on the LAN, control data and user data. Coordin-

ation of LAN functional resources is provided by the exchange

of control information between a user's session service and

the Session Services Subsystem of the appropriate LAN functional

resources. Recognition of operational functional resources and

the location, address, on the LAN is made by use of a fully

replicated resource directory at each node.

The tools of a generalized DBMS and of a Terminal Manager

are covered in Chapter III. Although the basic tools used by

the two functional resources are identified and their relation-

ships explained, the primary thrust of Chapter III is concerned

with maintaining the availability of functional resources to

users of the LAN. To this end, use of fully replicated, but

passive, functional resource components are made in order to

insure the availability of user services. By use of the control

capabilities recognized in the session services subsystem, the

failure of any functional resource can be identified and the

respective replicated functional resource made active without

the need for computer operator intervention. Through the proper

34

distribution of functional resources across the nodes of the

LAN, the failure of any one node would be transparent to the

terminal user and also provides a higher degree of overall

LAN reliability than does the use of a centralized complex

manager.

35

II. SESSION SERVICES AND TRANSPORT SUBSYSTEM

A. TRANSPORT SUBSYSTEM

The Transport Subsystem represents the fourth layer of

the ISO OSI Reference Model. The primary function of the

Transport Subsystem is to provide reliable end-to-end commun-

ication between the various nodes on the Local Area Network.

Since this area of research is designed to be covered in depth

by another thesis in support of the SPLICE project at the Naval

Postgraduate School, only its requirements in support of the

Session Services Subsystem, DBMS and Terminal Management func-

tional resources will be discussed. At this point it will

suffice to say that the Transport Subsystem must provide a

"transport service" to the Session Services Subsystem. [Ref.

151.

The Transport Subsystem must provide the Session Services

Subsystem with complete messages, while hiding all problems

encountered with the construction of messages from packets and

frames or vice versa. In addition to the above, the need for

a high priority message transmission and reception capability

is recognized for the communication of LAN resource control

messages between the LAN functional resources. Priority con-

trol communication between LAN functional resources could con-

sist of the notification of other functional resources that

the sending resource is saturated and that further requests

36

should be delayed, test messages for the identification cf

non-functioning functional resources, network attention mes-

sages used during automatic LAN reconfiguration, and many

more. The submission of messages from the Session Services

Subsystem to the Transport Subsystem could be performed

directly by use of a predefined queue, or by reference to

memory locations by indicating a beginning location and

message length.

B. SESSION SERVICES

1. Naming and Transparency

The identification of resources has become a central

issue in the development of distributed systems in order to

provide location independence and the possibility of having

multiple copies of the same functionally named resource within

the LAN. The transparency of location is the ability of a

process, at various levels within a hierarchy of processes,

to access data without knowing, explicitly, where it is stored.

A process is an active entity, which alone can change the

state of the system. A process can change itself, another

process, or data. Since the fact that a process changing it-

self is inherently location independent, only the situation

where a process changes another process, or data, is of con-

cern in order to achieve overall location independence of a

LAN functional resource. At best, complete location indepen-

dence and transparency should permit end users, and application

37

Ir
programs, the ability to access and manipulate data regard-

less of whether it resides locally or at another node on the

Local Area Network or at any remote node in the SPLICE system.

[Ref. 11].

Location transparency can be implemented by use of a

global directory and dictionary, which can be either central-

ized or decentralized, by use of a set of protocols for com-

municating between a local data directory and dictionary system

or by use of unique resource addresses. "The directory can be

centralized at a specific node, replicated at each node or

distributed among the nodes" [Ref. 12]. Although the use of

a directory and dictionary generically pertains to the access-

ing of data at local or remote sites, the same concept can be

applied to resource identification within a message structured

system. Using the concept of a directory or table, which could

be either centrally located or distributed, a simple mapping

algorithm can be implemented between generic message classes

which pertain to one or more functional network resources.

This requires a message protocol which provides for the iden-

tification of generic categories of network functional resources

and particular client requests which the functional resources,

the server, can then identify and act upon.

The concept of resource access via unique addresses

is one developed by K. Lunn and K. H. Bennett, Department of

Computer Science, University of Keele, England [Ref. 13'.

Since each node on a network can be identified by a unique

38

address, the address of a resource consists of the address

of the node at which the resource currently resides. In order

for a process, the client, to access a resource, the server,

it is necessary for it to obtain the server's address. This

was done by using both local and global directories, called

the Local Available Resource Directory (LARD), located at each

node, and a single Total Available Resource Directory (TARD)

for the network. Although the authors indicate that this

concept was developed specifically for a ring network struc-

ture, it can be simulated under other network architectures,

such as Ethernet, which uses a bus structure.

The LARD maintains no other information external to

itself except for the address of the TARD. When a process

sends a find request to its LARD, which contains the resource

name, it waits for the LARD to reply with the resource. UID

(address), or an indication that the resource does not exist

locally. The LARD initially checks to determine if the re-

source is local to the node; if it is not, it sends a request

to the TARD which replies to the process with the address of

the resource or an indication of it not existing within the

network.

Initiation and termination of resource availability at

a node is accounted for by making an appropriate entry in the

LARD and the TARD. In the ring structure, when a node cr

resource comes on-line, or active, and does not know the loca-

tion of the TARD, a message is sent to its neighbor, who passes

39

it to the next, unti2. t1.e TARD is located and replies 'with i

address to the requesting node or resource. Should 41e message

requesting the location of the TARD circle back to the initiat-

ing node, it is assumed that the TARD is disabled or never

existed, as in the case of initial network start-up. In this

case, a bid message is circulated among the nodes of the net-

work. Each node examines the bid and either passes it on

unchanged or increases the bid value and indicates its address.

When the bid returns to its originator, it examines the bid

and the address of the node with the highest bid, and sends

a message to the highest bidder requesting it to create a TARD.

At this point, the node initiating the TARD requests informa-

tion from each LARD and completes its creation process.

Duplicative bidding, node crashes and start-ups can

cause problems in the creation of a NARD. When duplicate bids

exist as a result of two or more LARDS detecting the absence

of the TARD, a LARD, upon receipt of a bid, enters a "bidding

mode," which prevents it from changing its bid, thus resulting

in at least one bid being higher than all others. Even in the

event that two TARDs were to be created simultaneously, the

TARD requesting information from the other LARDs would indi-

cate its bid value, and the node with the lower bid value would

back down, thus permitting the TARD with the highest bid to

remain active. This can happen when a node starts up and

misses the first bid, but bids highest on a second circulating

bid. Node crashes are taken care of by use of time-outs, where

40

the originator of a message would prevent indefinite hold-up

when the node servicing its message crashes.

In the above discussion on resource identification

and naming, there exist problems of directory storage and

reference, either in a decentralized or centralized manner,

and in maintaining the identity of failed or duplicate re-

sources. The solution to these problems may reside in simply

combining the capabilities of the Local and Total Available

Resource Directory, and by use of generic functional resource

identifications. The generic functional resource CID could

be maintained in a table and directory format, Figure 2.1, and

whose address could be initially generated from the identifi-

cation of its physical location, logical location or a combin-

ation of both through an address computation algorithm.

Message Status Resource Resource Control
Type Act/Pas Unique ID Characteristics

Act 1111Term.Mngt. Pas 2222

Act 3333DB Mngt Pas 1111

Per Mngt Act 2222Pe Mgt Pas 3333

Figure 2.1 Resource Directory Table.

41

The main issue of naming and transparency for the

SPLICE architecture and functicnal implementation is that there

should be no difference between local and remote messages.

Each message, originating on, or received by a LAN functional

resource, and being processed through the Session Services

Subsystem, would have its location recognized and be directed

to the appropriate local functional resource by use of the

Resource Directory.

The resident Session Services Subsystem would have

knowledge of its supported functional resource(s). If the

message in question is mapped to the resident LAN functional

resource, then the message is vectored to the appropriate LAN

node. If the message does not map to a resident functional

resource, the Session Services Subsystem would reference the

Resource Directory to determine the UID of the referenced

functional resource. Cnce the UID of the referenced func-

tional resource is determined, the Session Services Subsystem

would construct the appropriate message and pass it to the

Transport Subsystem for transmission over the LAN bus. Rather

than using a decentralized resource directory, the Resource

directory at each node on the LAN should contain an entry for

each functional resource, its default protocol characteristics,

and the UID of both the active and passive copy of the func-

tional resource within the LAN. Since the total number of LAN

functional resources is perceived to be small, due to the

vertical partitioning into four primary functions, a centralized

42

implementation would be extremely efficient while providing

a central reference point for reassignment of functional

resources to alternate nodes if necessary.

2. Session Services Subsystem

The Session Services Subsystem represents layer 5 of

the ISO OSI Reference Model and is utilized in establishing

connections between processes in a hierarchical manner, where

a user session would refer to the Session Services Subsystem

to utilize a network functional resource, such as the

Peripheral Management resource of the LAN. In addition to

establishing connections between processes, the Session

Services Subsystem is concerned with the primary issues of

session binding, maintaining multiple outstanding requests on

a particular user's session, i.e., process-process or process-

multiprocess sessions, and the maintenance of the atomic prop-

erties of session transaction. It is recognized that there

is no standard Session Layer protocol which is mainly attri-

buted to the primary concern over the lower layer protocols

of layer 1 to layer 4. The higher layer standards will hope-

fully be forthcoming. [Ref. 151.

Session binding is generally concerned with establish-

ing certain conventions about a session between two or more

processes, or between a user's process, represented as a ses-

sion, and LAN functional processes. It typically addresses

such issues as full versus half duplex, character code, the

presence or absence of encryption or text compression, flow

43

control window size for use by the Transport Subsystem, and

the methods used to recover from transport layer failures.

The issues of half versus full duplex, and the character code

are not at issue in the original design of the LAN in respect

to the Data Base, Terminal and Peripheral management modules.

The communication between the LAN functional modules is based

upon homogeneous network components, but future growth may

dictate the need for character conversion among future nodes/'

resources due to expanding organizational needs.

Within the SPLICE LAN, the Session Services Subsystem

would be duplicated at each node supporting a functional re-

source. The Session Services Subsystem would provide two

types of control for users of the LAN, general user session

service for communication between LAN functional resources,

and a Controlling Session Service which would be used to

control the overall need of each terminal user. A session

service would be created at a node whenever a reference to

the functional resource at that node is made by another func-

tional node on the LAN supporting a terminal user. The user's

session service would be formed to provide any unique control

information in support of a user's request for service between

two or more nodes or functional resources. This is particu-

larly necessary if one considers a user's request for a logical

file from the Data Base Manager which would be compacted or

encrypted. In order for the requesting Session Services Sub-

system to properly interpret the logical file, it must first

44

have knowledge of its structure. The establishment of a

session service, in respect to the request for service by a

user, provides a method of establishing ccntrol and format

information prior to the receipt of the requested data.

A Controlling Session Service is a reference block

established for each terminal user of the LAN and is used to

provide a form of centralized control of a user's session with

the LAN. There is only one Controlling Session Service per

user, and it may reside at any functional node on the LAN

within that node's Session Services Subsystem. Its primary

purpose is to provide a reference control point for each user's

session and, at the very least, retains all outstanding re-

quests for service for that particular user.

A Controlling Session Service is established after a

terminal user has been cleared for access to the LA/4 by the

Terminal Manager. Since each terminal user must gain access

to the LAN via the Front End Manager, the Front End Manager

would initially direct a user's terminal messages to the

Terminal Manager. In that the Front End Manager serves as

the entry-point for users of the LAN, a decision must be made

as to whether the Controlling Session Services should reside

within a single node, or be capable of residing at any node

on the LAN. In either case, the Front End Manager must have

its destination reference for each user amended to reflect the

location of the user's Controlling Session Service, either

explicitly from the Terminal Manager or implicitly by use of

45

a default destinat.on for a single nca ilemen~atIc.

simplicity of having a particular node or module provide user

Controlling Session Services is possibly its most attractive

feature although the need for additional resource control

messages is also eliminated. One of the drawbacks of a single

node or module implementation is that user support is dependent

upon the availability of that node or module. By permitting

user Controlling Session Services to reside at any node on the

LAN, the non-availability of any one node would only result in

partial degradation of the LAN. It is recognized that a dual

processor node, as with the use of a Tandem-like system, a

single module implementation may be highly desirable. Restor-

ation of LAN functional resources and any affected Controlling

Session Services are covered in Chapter III.

If Controlling Session Services were capable of resid-

ing at any node on the LAN, then once the terminal user has

been cleared for access to the LAN, the Terminal Manager could

elect one of two possible options, depending upon its own load

considerations. The Terminal Manager would have the option of

either accepting responsibility for that terminal user by

establishing a Controlling Session Service, or it could make

a request for one of the other functional nodes to establish

a controlling session service by issuing a control message to

each LAN node. This would be done by issuing a control message

to each functional node address supporting an active functional

resource. The first functional node responding with a positive

46

acknowiegement wculd have its addrss i ~nd2ct; to the Front

End Manager and all future interaction with the LAN would be

directed, via the Front End Manager, to the corresponding

functional node. It is the Controlling Session Service which

actually maintains the sequential execution of a terminal

user's commands and the atomic properties of the corresponding

transactions within the LAN. It is recognized that LAN func-

tional control messages should not require the establishment

of a session service between functional nodes since the pro-

tocols for control messages would follow a standard predefined

format. Only user data messages need have a session service

established.

The LAN must be capable of supporting a variety of

terminals, each with different screen sizes and control re-

quirements. Since the initial user access to the LAN is via

the Front End Manager, it is felt that the Front End Manager

should provide for the identification of a user's generic

terminal type in the initial interaction with the Terminal

Manager. This identification of generic terminal type would

be used by the Terminal Manager in constructing the appropriate

control characters for the actual display user data onto the

respective physical terminal. In addition, the Front End

Manager should provide for the conversion of binary character

codes into a standard binary character code representation,

such as ASCII, used on the LAN.

47

The preien¢ &. a-'- o f text corpres sion and _n -

cryption are characteristics provided by the DBMS subsystem

which must be accounted for when communicating between LAN

resources. This thesis presents a viewpoint of a hierarchy

of processes within each LAN functional resource which are

organized from lowest to highest by Cperating System processes,

LAN functional resource processes and user processes. As used

here, a user's process is synonymous with the concept of a

user's session within the LAN. Although the need for both

batch and interactive user processes has not been proven rela-

tive to the use of a well structured and flexible database

query language, provisions for its use must be provided in

fulfillment of the SPLICE functional design requirements.

The Session Services Subsystem provides the overall

controlling mechanism among the clients of the LAN functional

resources, i.e., the terminal user, and the LAN functional

resources themselves. Regardless of whether a process is

based upon an interactive application or upon an interactive

session, via the issuance of query language transactions by a

user of the LAN, there must be a Controlling Session Service

to communicate and control the requirements of the user pro-

cess(es) between itself and the capabilities, or functional

resources, of the LAN. In order to establish communication

between the Controlling Session Service, the client, and the

Session Services Subsystem of the LAN functional resources,

the servers, a simple request-accept message transfer needs

48

to oe performed. The Controlling Session. 2rvice wcu2

request service from the non-resident Session Services Sub-

system of the appropriate functional resource, when an initial

reference is made to it by a user session. The request for

service, via messages, would include the requesting Session

Service ID, the requested Session Service ID, user process ID,

and any appropriate control information, such as the use of

text compression or encryption. Figure 2.2 represents the

general format of a request for the establishment of either

a controlling or non-controlling session service.

From To I User/Client I Priority
Res. UID Res. UID UID Indicator

Time 1 Functional LAN Control Information, i.e.,
Stamp Session Service, Attention, Queries

Figure 2.2 General LAN Control Message Format.

The receiving Session Service Subsystem would examine

the client's request and establish the necessary address space,

and control information for future communication, if it is

capable of handling future client requests. An acknowledgement,

indicating either acceptance or denial of session support,

would then be sent to the requesting Session Services Subsystem

and would include any control characteristics which may be

necessary for further communication. Once this sequence of

49

events has been accomplishd, the usec's process, zt:,cuch C'e

Controlling Session Service, can communicate freely without

the need for reconstruction of future session services.

Reference to currently supported user sessions would be main-

tained in an Active Session Table, which would be used in

identifying the validity of client access for service by the

functional resource.

There are two possible situations which may exist for

the interaction of LAN functional resources and user sessions.

The term "user session" is used here to refer to either an

interactive user process with the LAN via a high level query

language or via an interactive application. When a user's

session includes an interactive application, both the applica-

tion and Controlling Session Service may reside within the

same LAN processor. The first situation exists when the user's

session and the LAN functional resource reside within, or are

supported by, the same LAN processor, and is represented by

Figure 2.3. In this situation, the requirements for text com-

pression and encryption should not exist and the Session Serv-

ices Subsystem need only coordinate the resident user's session

DBMS or Terminal needs to the resident LAN DBMS or Terminal

Management functional resource. The user's session communi-

cates with the resident functional resources via the Session

Services Subsystem which insures that the atomic properties of

a user's process transactions are maintained. If the user's

session includes coordination with an interactive program,

50

Services S ubsystem communicates the results back to the user

process, otherwise the results are communicated back to the

terminal user via the Terminal Manager.

To LAN Bus

TRANSPORT SUBSYSTEM
RESOURCE DIRECTORY

I/O Message Queue Resource UID Resource

Z ID Character.

SESSION SERV. SUBSYS.

SESSION CONTROL.
SERVICES SESSION INTERACTIVE

SERVICES APPLICATION

T ************** *********

* RESIDENT *
DATABASE OR TERMINAL * OPERATING SYSTEM *

MANAGEMENT* HANDLES INTERRUPTS *
SUBSYSTEM* AND *

* PROCESSOR TIME *
* ALLOCATION *

Note: Each Session Services Subsystem will contain both
Controlling and Non-controlling Session Services.

Figure 2.3 Functional Resource Processor Configuration.

51

!he second sinuaticn concerns the :a con

between a non-resident user process and the DBMS or Terminal

functional resource. When a user's process makes a request

to a functional resource, the Controlling Session Service

utilizes the Resource Directory and matches the transaction

resource ID to the UID of the functional resource on the LAN.

The Controlling Session Services would be responsible for

monitoring the establishment and destruction of a user's

sessions among the various LAN functional resources. Only

initial references to a LAN functional resource should require

the creation of non-controlling user sessions and all future

references should only require the identification of the func-

tion resource UID and subsequent construction of the appropri-

ate messages required to fulfill the user's session transactions.

Once the functional resource UID is determined, the Session

Services Subsystem constructs the message in accordance with

the characteristics of the LAN functional resource and passes

the message to the Transport Subsystem for transmission over

the LAN bus.

Upon receipt of a message from the Transport Subsystem,

the Session Services Subsystem matches the message user UID to

its active session table. If there is a matching entry, then

access is permitted and the LAN functional resource is invoked

via message. If a match does not exist, the Session Services

Subsystem would simply disregard the message, since no subse-

quent messages should be transmitted unless an acknowledgement

52

.. ,b ,i . - • -

.or the creation of a users session service nas ten xece. u

by the requesting or Controlling Session Service. This pro-

vides a type of security, such that information cannot be

extracted from a functional node unless a properly established

user's session service has first been defined.

It should be recognized that certain requests for

service from a user process may require coordination and con-

trol of multiple LAN functional resources. In this case the

Controlling Session Service Subsystem would be responsible for

ensuring that a user process request for service is appropri-

ately broken down into its respective component requests for

service and that they are performed in the appropriate order.

This often results in a chaining effect, creating a series of

client-server relationships. An example may be the request

of a user's process for the selection of two data elements,

their summation and subsequent printing of the results to a

hard copy printer. For the sake of argument, let us assume

that the user's process was generated by a user logging onto

the LAN via a terminal and that the user's Controlling Session

Service was established within the Terminal Manager. The

Terminal Manager's Session Services Subsystem could provide

either centralized or decentralized control of the user's

request for service. For centralized control, the Terminal

Manager's Session Services Subsystem would break down the user

process request into two separate messages, one for the DBMS

and one for the Peripheral Manager, and would insure receipt

53


~~~~~~ 4h CsuCn .... in 4at i-ems fr.. - ¢ ..

to requesting the printing of the results by the Peripheral

Manager.

In decentralized control, the Terminal Managers Session

Services Subsystem would request the appropriate services of

the DBMS manager and indicate the destination of the results,

i.e., the Peripheral Manager. Figure 2.4 represents a general

message for decentralized control of a user's request for

service.

IFrom To I User I Priority Time
Res. UID Res. UID UID Indicator Stamp

User Message Fin s .

Figure 2.4 Decentralized Message Format.

Since each Session Service Subsystem has access to the

control characteristics of each of the !AN functional resources,

the decentralized approach would provide the benefits of de-

creasing the required number of messages to complete the user

process transaction. The centralized approach would require

the transmission of two messages, assuming that an appropriate

user session service has already been established among the

appropriate LAN functional resources.

54



III. DATABASE AND TERMINAL MNAGEMENT FUNCTIONS

A. OVERVIEW

The concepts employed in the recommended implementation of

the Data Base and Terminal Management resource requirements

for SPLICE center around a highly decentralized and loosely

coupled distributed Local Area Network (LAN). It is :erceived

that the Data Base Management, Terminal Management and Periph-

eral Management resources of the LAN will be implemented on

separate complete processors, which communicate with each

other via a bus structure.

Section B will describe the recommended use of Database

Management software concepts for the DBMS requirements of the

SPLICE LAN. This information has been collected from numerous

SPLICE documents provided by NAVSUP and FMSC. [Refs. 1, 2, 3,

4]. It will illustrate and describe the major elements cf the

Data Base Management resources of the LAN and is not intended

to encompass all the considerations necessary to fully imple-

ment the proposed design concept. Section C will discuss the

concept of Virtual User Terminals as it applies to the Terminal

Management Functions of SPLICE. Section D will discuss the

issues of Back-up and Recovery as they apply to the Terminal

and Data Base Functional Resources. A general model for Back-

up and Recovery is provided along with its application to three

55



secondary LAN Functional Resource Managers.

B. RECOMMENDED USE OF DBMS SOFTWARE

1. Introduction

The recommended functional implementation of Local

Area Network (LAN) functions is based upon the horizontal

distribution of four major functional resources: Terminal

Management, Data Base Management, Peripheral Management, and

Front End Process Management. Each of these functional re-

sources operate as peers, i.e., a peer-coupled system, com-

municating with each other over a bus structure with message

passing mechanisms. The main advantages of the peer-coupled

system is that it provides the greatest flexibility in overall

system design, while providing increased reliability of the

LAN overall, in the event of the failure of any node. In

addition, a loosely coupled, or peer-coupled, LAN helps the

elimination of the bottleneck which is often experienced in

a vertically distributed system where a centralized ccntrol

mechanism is used for resource assignment. [Ref. 6].

This thesis recognizes the following major components

and files of the Data Base Management module of the LAN: Data

Base Management System, Message Communication and Control Sub-

system, User Transaction Log Files, and Alternate Function

Log Files. These major components and files are used to sup-

port and control user references to the data base while

56



prcviding user reference ana system state :orr2::cnl:or

back-up and recovery of user processes and the LAN DBMS

functional resource.

2. DBMS Subsystem

The criteria for selecting a particular set of data

management capabilities is not the concern of this thesis and

would most likely be based upon such items as response time,

security, ad hoc user query requirements, application inde-

pendence from physical data structures, data accessibility,

sharability and integrity, just to name a few. Although a

recommendation for any particular type of DBMS is not made,

the benefits of utilizing a DBMS will be discussed along with

its interactions with the Session Services Subsystem and the

Transport Subsystem as defined by the International Standards

Organization (ISO).

The term DBMS, as used in this thesis, will refer to

a fully implemented data management facility which is capable

of supporting predefined data structures for use by interactive

and batch programs, and on demand user queries to the LAN data

base. The following is a list of six data management tools

considered necessary to provide overall organizational support

for highly interactive high level user queries and application

programs.

1. Data Dictionaries/Directories (DD/D)
2. Data Definition Languages (DDLs)
3. Data Manipulation Language (DML)
4. Database Query Language (DQL)
5. Database Utilities
6. Data Communication (DC) Facilities.

57



these components in separate modules and that future tech-

nology will probably lend itself to a hardware/scftware

combination in providing the capabilities as cited by the

data management tools. Depending upon the particular DBMS

under consideration, various combinations of the above DM

tools may be combined, but their general capabilities, and

the degree to which they are implemented should be considered

in respect to organizational requirements

The Data Dictionaries/Directories (DD/D) are imple-

mented in a variety of ways and may even be integrated within

the DDL and the DML. The Data Dictionary is used to identify

and define the data elements contained in the data base, and

any relationships which may exist between these data elements.

The data directory generally describes how each data element

is used and by whom it is used. The data directory may refer

to application programs, input or report documents, or simply

to job streams, but in general it supports the use of data

elements identified by the data dictionary.

A Data Sub-Language (DSL) consists of a Data Defini-

tion Language (DDL) for defining data objects (e.g., fields)

and a Data Manipulation Language for the processing of data

objects. One use of the Data Definition Language (DDL) is

for the defining and describing the organization of data by

the Data Base Administrator (DBA) or his staff. As identified

by the CODASYL group, its main function is to describe the

58



:cr~tenr~t ~ 9':cxr: ' --e schera a'd subschema. Although

all DBMSs have a DDL, they vary in the manner in which data

elements are described in the data model, hierarchal, network,

or relational, and the extent to which complex relationships

can be specified by the DBA. The complexity and capabilities

of the DDL should be of prime consideration in its use at the

Navy Stock Points and Inventory Control Points.

Data Manipulation Languages (DMLs) are used to transfer

data to and from the database. It can be accessed by calls

from a procedural language. The use of a calling mechanism

can be implemented in a message-based .ommunication subsystem

which is used to provide communication betwen processes. It

should be noted that the capabilities of the DML directly affect

the applications programmer. Since the DDL and DML are closely

related, the functionality of each generally determines the

degree of responsibility which must be assumed by the DBA or

application programmer. As the functionality of the DDL in-

creases, the DBA's responsibilities will likewise increase,

thus decreasing the programmer's responsibilities for the use

of the DML. Since the data base which will reside on the LAN

is limited to twelve transaction types, an increase in the

DBA's responsibility should provide for greater programmer

productivity and program maintainability over the life cycle

of the SPLICE project.

Database Query Languages (DQLs) are generally inter-

active in nature, although batch DQLs are also available.

59



n-, sr facilities," DQL facilities prcvide

direct interaction with the data base schema and permit para-

metric and Boolean search strategies for data retrieval or

updates by approved end users of the DBMS. By providing a

user friendly DQL, users can either perform ad hoc queries

or can build user command files for repetitive data entry,

retrieval and validation. In spite of the twenty new appli-

cation programs being developed for SPLICE (see Figure 1.1),

the need for current and future information requirements by

the Navy Supply System can be supported by a fully implemented

and varied Database Query Language.

Database utilities cover a multitude of areas, 
from

password security to image management software and database

tuning utilities. Database back-up and recovery generally

consists of four components: dump files, journal files,

utilities and operating procedures. The dump files are used

to copy the entire database, with its control structures,

while the journal files are used to record transactions pro-

cessed against the data base. In order to provide for back-up

support in the event of a hardware or software failure at the

DBMS processor, it is recommended that the database and its

structure, along with a duplicate journal file, be maintained

at an alternate node in order to provide real-time back-up

support of DBMS functions. The alternate node assignment is

discussed further in the section on back-up and recovery. The

back-up and recovery utilities perform roll forward operations

60



which uFdate dump files without requiring complete dump file

recreation and roll back operations to reverse the direction

of erroneous DBMS transactions or bad data. Additional data

base software for text and graphic displays, audit trail util-

ities, data base tuning utilities, database development aids,

data base reloading and reorganizing aids and database sizing

and responsiveness aids are also available and could prove to

be extremely useful in support of LAN life cycle requirements.

The final component of the DBMS concerns the Data

Communication (DC) facilities which were originally introduced

by IBM in the early 1970s as an integral part of the data man-

agement technology. Although DC facilities can be implemented

to provide for distributing data bases and establishing network

DBMS facilities, DC as used here, refers to the communication

facilities used to interface actual DBMS functions with the

Session Services Subsystem discussed in the following section

[Ref. 91. Figure 3.1 represents the relationships of the six

component tools of a DBMS, as discussed above.

Although the above list of DBMS components may not

cover every aspect of DBMS component functions, they are used

to describe the types of facilities which must be considered

in providing a completely distributed processing system in

which the actual DBMS functions are implemented separately

from the actual interfacing of the session services and trans-

port subsystems. By restricting the DBMS functional interfaces

to the Session Services Subsystem and the Operating System of

61



the particular vendor, greater flexibility in system design

and future growth should be achieved by localizing the re-

quirements for interface modification, should the need exist.

I Session Serv.
Subsystem Journal

~Files

DB Comm. Database
Facilities Utilities

DQL-- - - - - - - - -

DBMS
Control Module

DD/D
Schema

Subschemas

*******.*.*******

* Physical *
* Data Base *
* *

Figure 3.1 General DBMS Component Tools.

In addition to the standard benefits and restrictions

imposed by use of a DBMS, the organizational needs of the Naval

Supply System and its supporting organizations should be con- A

sidered in developing a network and the corresponding DBMS

functions. Access between Stock Points (SPs) is designed to

be performed via the Inventory Control Points (ICPs).

62



With this concept in mind, and the SPLICE implementation on a

LAN, the Stock Points may physically maintain a centralized

database, yet the overall Naval Supply database, as accessed

over the national network and supported by the Defense Data

Network, could be conceived as a physically and logically

distributed database. Although the consideration of the

National Network implementation is beyond the scope of this

thesis, to fully utilize the organizational aspects of a DBMS,

use of a "federated database" should be considered [Ref. 101.

Federated databases, as introduced by McLeod and

Heimbigner, consist of a number of logical components, i.e.,

Stock Points, which have their own logical and conceptual

schema. Each component schema within the federation is related

by use of federal schemas, Inventory Control Points, which are

used to express the commonality of data throughout the federa-

tion and specifies what data can be accessed or modified by

federation components. [Ref. 101. Since database users or

application programs generally access data within the local

component, known as locality of reference, a great majority

of locally generated transaction requirements could probably

be accommodated within the SPLICE LAN. In the event that a

federation component requests data maintained by another, or

several federation components, the issuing component consults

the federal schema to find the data either explicitly or

implicitly, based upon the requesting transaction.

63



Using the federated database concept, the Stock Points

operate as federation components and the Inventory Control

Points operate as federal controllers. By use of the feder-

ated database approach, component and federal Database Admin-

istrators can optimize the structure of the individual data

bases to implement locally significant processing considera-

tions, while the federal DBA can maintain control of component

accesses to the federal or other component data bases. The

federal DBA supplements the component DBA by establishing

relationships between the federal and component schemas,

defining appropriate interfaces for components, while permit-

ting each member of the federation to evolve in response to

changing environmental and organizational constraints. As

long as the component members continue to support the inter-

faces defined by the federal DBA, they are free to modify both

the logical and physical structure without adversely impacting

upon other federation components. The federal controller may

modify its schema in order to accommodate policy decisions,

unexpected component requirements, or the addition or deletion

of federation components. Although the scope of this concept,

as it applies to SPLICE, may be a radical divergence from the

mainstream of this thesis, its overall utility should be con-

sidered in respect to the independence of Stock Point opera-

tions and the organizational and control requirements of the

Inventory Control Points.

64

L_



C. TERMINAL MANAGEXENT FUNCTIONAL INPLEMENdTATION

The purpose of Terminal Manager is to provide LAN users

with the facilities for communicating simultaneously with a

large number of processes spread out among various computer

systems. A terminal user might need to communicate with the

Local Area Network or other local area network (e.g., other

Stock Points) through a national network.

This thesis recognizes that the terminal users should be

able to manage any number of concurrent processes within that

user's session with the LAN, to see multiple outputs on the

display device as the user desires [Ref. 231. To achieve this

goal, we use a concept called Virtual Terminal Management,

which converts a single physical terminal into multiple virtual

terminals, each of which may be written into or queried for

input. Virtual terminal management extends the features of

the physical terminal by providing extensive editing facilities,

the capacity to maintain all or selected output in disk-based

data structures and sophisticated mechanisms for the management

of the terminal screen.

Virtual terminals are device independent, where the specific

characteristics of the terminal at hand are known only to the

lowest level of the Terminal Manager. Given an environment in

which a high degree of simultaneous activity is possible, one

fundamental problem encountered is how to translate that activity

into a form comprehensible to the user. It has been thought

that terminal users should be able to simultaneously manage any

65



number of concurrent logical processes, cr logical user

sessions, with the LAII. This is based upon the belief that

people in their daily work routinely handle multiple concurrent

tasks, with many interrupts, while realizing some specific

tasks and being able to switch back and forth quickly between

related tasks. [Ref. 24].

The discipline for user command interaction should be

consistent across all user sessions and would include the use

of control keys, help facilities, prompting, feedback, etc.

This concept works with the following rules:

1. The user must have complete preemptive control cf
his terminal at all times. He should be able to
allocate and arrange the space on his display

device at will, by selecting which process to
view at any one time.

2. Processes should never depend on the actual
mapping of their output onto the user's display
device. User sessions may stipulate preferred
viewing conditions, but these are applicable only
as long as they do not interfere with the first
rule.

3. The output of any user session should never be
discarded by the Terminal Manager unless specif-
ically requested by the user or by some pre-specified
time interval on the system.

The users see a collection of virtual terminals mapped

onto rectangular areas of their display device. Each virtual

terminal may be thought of as roughly equivalent to an inde-

pendent physical display device. Only one virtual terminal

is termed active at any instant in time, representing the one

used for acceptance of input from the terminal keyboard.

Through the use of special keys and monitor commands, the

66



user should be able tc switch his attention frcm one virtual

terminal to another. The terminal user may choose to see as

little or as much of a particular virtual terminal as he wishes.

They may block or discard output, abort or suspend the session

associated with a virtual terminal or they may specify at any

time to scroll back and forth to review previous material.

It is important to realize that a user may have more than

one virtual terminal displayed on his physical terminal at any

one time, but user interaction with the LAN is always supported

by reference to only one particular active virtual terminal.

A virtual terminal has the following components: a line, a

Pad and a window. The line is the virtual terminal's source

for keyboard input. The Pad is a disk-based data structure

used for storing and editing a virtual terminal's output. The

window represents a potential mapping of a virtual terminal

onto the display device and is managed by a screen handler.

A logical session deals with a single virtual terminal and its

data structure. Special interface routines distribute the

necessary commands to the appropriate logical session repre-

sented by a virtual terminal.

The screen handler and a line handler are created when a

user first accesses the SPLICE system. The screen handler is

responsible for managing screen space of the user's terminal.

The line controller is controlled by the terminal input handler,

and is responsible for handling all subsequent input require-

ments for the user. One Pad Handler, associated with each

67



terminal user, is initiated for each user session with the

LA', and satisfies that session's output requirements by send-

ing display commands to the terminal output handler. In

Figure 3.2 we can see a virtual terminal controller with its

supporting components.

INPUT SCREEN OUTPUT
CONTROL HANDLER CONTROLCOMMANDS' MAPPING C OM14AND S

SACTIVATION COMMANDS
COc COM S

HANDLER HANDLER

FRUS KEYBOARD DISPLAY
FOR INPUT COMMANS
INPUT"'

STERMINAL TERMINAL

INPUT OUTPUT
HANDLER HANDLER

CHARACTER TuTERMINAL

[KEYB6OARD I  DISPLAY T

Figure 3.2 Virtual Terminal Controller.

User output can be multiplexed in both space and time by

using the two-dimensional features of a display terminal.

Input can only be multiplexed in time and this function is

performed by processes called line handlers. Line handlers

allow user access to support processes such as editors, com-

pilers, etc., and are associated with a logical input device,

called a line. The user session owning a virtual terminal may

68

-- ~- ~-~-



r

request that input be collected, via their logical input

device, in one of three mcdes:

1. Character-at-a-time: A single character is
returned in response to each request. Echoing
is optional.

2. Page-edit: Characters typed by the user are
allowed to modify the contents of the virtual
terminal until a user specified break character
is typed. A user session may also specify the
set of acceptable characters, such that any
character not in that set would be ignored. The
page-edit mode is used primarily for editing
files, and is basically a driver for the editing
facilities of the Pad-HANDLER.

3. Line-edit: This is used primarily for processing

commands, entire text lines or single tokens.

When processing user terminal ccmmands, it is often useful

for a user to specify indirect sources of command input, i.e.,

programmable function keys, macro files, or command language

programs. The output capabilities of a virtual terminal are

provided by processes called Pad Handlers. The Pad Handlers

manage disk-based data structures called Pads, each of which

represents the storage and display characteristics cf a virtual

terminal. A Pad Handler maps a Pad onto specific areas of a

user's terminal display by issuing commands to the terminal

output handler, seen in Figure 3.2. A Pad provides the ability

to hold a number of lines of text, up to some maximum number,

based upon the terminals formatting and display capabilities.

All changes made to the user's Pad reflect changes made to the

user's terminal image on the display screen. A given Pad can

be associated with more than one Virtual Terminal suppcrted by

69



the Terminal Manager. This feature can be useful when a Pad

contains format information which is applicable to multiple

terminal users. A range of editing features are provided by

the Pad and include some or all of the following:

-Cursor motion by characters, words, lines
and pages.

-Deletion of characters, words, lines and pages.

-Joining and splitting of lines.

-Character over-write or insertion.

-String location and substitution.

-Text selection and transfer.

The Pad provides all basic text editing facilities for

the terminal manager. The Editors of the Terminal Manager

can be shared by multiple Pads and implements only the more

complex editing ccmmands such as definition and execution of

edit macros. By placing all basic edit functions on the Pad-

HANDLER, they are available to all Pads representing virtual

terminals. The ability to modify the mapping of a virtual

terminal to a user's screen, without affecting the Pad's output

cursor, is central to the system's ability to display a virtual

terminal's past activity. Normally, movement of a Pad's output

cursor also changes the mapping of Pad lines onto a window,

resulting in a scrolling action, i.e., the most recent data

is always displayed. Instead, output mappings may be defined

to follow a second type of cursor, the viewing cursor. There

are as many viewing cursors as there are virtual terminals for

70



a given Pad, each under the control of the virtual terminal

controller assigned to each user's virtual terminals. The

user may detach the viewing cursor of a virtual terminal for

the purpose of reviewing past text and perhaps selecting it

as input to another logical session.

Screen handlers solve problems associated with a user's

desire to see multiple logical session results on their ter-

minal screen. This is accomplished through a hierarchical

decomposition of the screen space reminiscent of the way

computer graphic systems divide and map data onto graphic

output devices. The physical entities dealt with are: screens,

images, regions and viewports. The logical entities are super-

windows and windows. The mapping from logical to physical

entities is achieved through the use of configurations, which

is represented in Figure 3.3.

SCREEN

.IIMAGE

SUWIDOf.-----------------REGION

CONFIGURATION

WINDW-- ------------ VIEWPORT

LOGICAL PHYSICAL

Figure 3.3 Logical and Physical Screen Configuration.

71



The window is the space component of a virtual terminal

that represents a potential mapping of the output contained

in a user's Pad onto their display device. Its attributes

include preferred contrast, cursor blinking, etc., and upper

and lower limits of the window size when displayed. The

superwindow is a logical entity that represents all windows

associated with a virtual terminal of a particular lcgical

process. The grouping of windows within superwindows insures

the contiguous display of all output associated with a partic-

ular user or application process.

A screen is the visible space on a display, and has a

fixed height and width. Processes outside the user's virtual

terminal controller do not know about the screen characteristics

unless they explicitly request the display profile from the

terminal output handler. Since the realizable display is

limited in size, it is desirable to have multiple screen images,

each of which may be treated as the physical screen. This is

necessary in cases where the user wishes to allocate the entire

screen to a particular process, while allowing other processes

to continue in a background mode. Those processes may then be

mapped to the screen at a later time. An image is what a

screen might look like at any one time and contains a subset

of those virtual terminals associated with the user's session.

The user may define any number of images, swapping between them

through the use of specially programmed functions keys. If the

user wants to observe multiple processes simultaneously, it

72



may be desirable to map their output onto the display simul-

taneously, i.e., map them into the same terminal image.

Each process is allocated to a region of the screen which

would be mapped to the virtual terminal associated with that

process. Thus, an image is composed of a set of contiguous

regions. A region is a collection of contiguous viewpcrts.

The size of a viewport is dependent upon the size of its

associated region and the bounds specified for its associated

window.

A configuration is a description of the way in which a

subset of a user's virtual terminals should be displayed. It

specifies the relative positions of the windows, their rela-

tive sizes as a percentage of the whole and actual viewing

conditions. It is through configurations that virtual ter-

minals are actua.11y mapped to the screen. A process may con-

figure its virtual terminals in as many ways as it desires,

but is not aware of which configuration is currently active.

Only the user is aware of the current configuration presented

and can swap configurations via specially programmed keybcard

keys.

A line represents a logical keyboard and Pads represent

logical displays. Their physical counterparts comprise a

terminal. The line handler communicates with the terminal

input handler which manages the keyboard. Pad Handlers com-

municate with the terminal output handler which manages the

terminal display. The input and output handlers are the

73



process-level interface to the interrupt-level I/0 handlers.

There is exactly one input and output handler for each ter-

minal in the LAN. The physical characteristics of the ter-

minal with which any LAN process is associated may be obtained

via declarative keyboard and display profiles. The physical

characteristics of a user's physical terminal could be obtained

by the mapping of a physical terminal ID onto a generic ter-

minal transformation table. One possible format for the

support of multiple types of physical terminals is presented

by B. C. Hillsberg, and is presented in Figure 3.4 [Ref. 26].

Each column of the transformation table contains a set of

transformation identifications which must be applied to the

generic codes to correctly invoke the desired terminal

sub-function.

PHYSICAL SCREEN CURSOR POSITION CURSOR CURSOR CURSOR

TERMINAL CLEAR HOME CURSOR UP DOWN LEFT

INFOTON T1 T1 T1 T1 T1 T1

IBM 3101 T1 T1 T2 T1 T1 TI

HDS T2 T2 T3 T2 T2 T2

TVI-912 T3 T3 T4 T3 T3 T3

ADM-3A T3 T3 T4 T3 TT3 T3

Figure 3.4 Generic Terminal Transformation Table.

A keyboard is considered to be any device capable of gener-

ating distinct signals in response to user input. A keyboard

74



profile is constructed by the terminal input handler and maps

the signals generated by the keyboard into the virtual terminal

control functions which they represent. An example of this

could be the EBCDIC characters 15 which could be mapped into

the function DELETECHARLEFT. Each character may have at most

one control function, but a control function may be generated

by more than one set of characters.

Characters which are not mapped are given no special inter-

pretation by the virtual terminal controller. Only the terminal

input handler relies on particular signals representing a

particular control function. The function of a terminal input

handler is to collect data from a user's keyboard, usually in

response to a request for input from a line handler. The

terminal input handler is also responsible for creating and

maintaining the keyboard profile.

A display is considered to be any device on which some

bounded number of text-lines may be shown simultaneously. The

format of display ccmmands have evolved out of a desire to

minimize both the amount of state information maintained by

the terminal output handler, and make the user's terminal

transparent. The commands attempt to incorporate the features

provided by most terminals, while leaving out some features

provided by more intelligent terminals. The most used commands

are: alert (ring bell), clear to end of line, delete line,

insert line, clear screen, delete character, insert character,

move cursor, write character, and many more.

75



A display profile would be constructed by the terminal

output handler and would contain the height and width of the

display and the contrast characteristics suppcrted by the

particular user's terminal. The display profile is provided

to any user's process upon request and is required by the

screen and Pad Handlers. The function of a terminal output

handler is to translate the terminal commands into control

signals which the particular display can understand. The

terminal output handler is also responsible for creating and

maintaining the display profile, and providing it to LAN user

processes upon request.

There are four general classes of control functions which

would normally be provided by the Terminal Manager.

1. Screen and command input functions:
Aborttask, Autoblock, Changeconfiguration,
Changeimage, Changeregion, Changeviewport, etc.

2. Line editing functions:
Cursorleft, Cursorright, Cursorwordleft,
Deletecharleft, Deletewordright, Insertmode, etc.

3. Page editing functions:
Cursordown, Cursorleft, Cursorup, Splitline,
Cursorwordleft, Deletecharleft, Pagedown,
Pageup, Joinline, etc.

4. General screen management functions:
Assignlot, Cancel, Comment, Execute,
Expand, Help, Prompt.

It is recognized that the degree of definition for terminal

control functions is dependent upon the amount of sophistica-

tion desired by the using organization. The control functions

described above only represent a general breakdown of the

76



control functions which should be provided for the suport

of multiple user processes within each user's session with

the SPLICE LAN.

Additionally, the Terminal Manager should provide the

facilities for the establishment of user mail boxes to be used

for inter-user message transmission. The mail boxes could be

used to communicate organizational message text between users

of the LAN, and could be used for user queries or for auto-

matic user notification by the Terminal Manager. Automatic

user notification could be performed immediately after the

users completed the log-on process with the Terminal Manager

and before the user begins an interactive session with the

LAN.

Submission of message text to a particular user, by another,

would require verification of the destination user prior, to

acceptance and subsequent building of an appropriate mail box.

Regardless of whether a message text is accepted by the Ter-

minal Manager, acknowledgement or denial of the request should

be transmitted to the requesting LAN user. Denials for the

building of a mail box should also provide an indication of

the reasons for denial. Common or community mail boxes should

also be provided in order to transmit non-specific organiza-

tional messages to all users of Lhe LAN or a subset thereof.

D. BACK-UP AND RECOVERY

In considering the distribution of functional resources

within the LAN, one must provide a mechanism by which failed

77



LAN resources .an be recognized, and the functions restored

regardless of the state of the processors upon which they

might run. Back-up and recovery is particularly important

in support of the SPLICE requirement such that no one failure

of a LAN resource will terminate support of the SPLICE organ-

izational requirements. Although there are a multitude of

methods which could be employed to provide back-up and re-

covery, i.e., multiple copies of functional resources across

the LAN, use of a semi-vertical partitioning of functional

resources is recommended. This is a concept introduced by

Professor J. Popek, University of California at Los Angeles

[Ref. 161.

In general, the concept of the vertical layering and par-

titioning in distributed computing concerns permitting all

processors to be capable of any function, thereby provides a

type of "graceful degradation" of system performance in the

case of malfunctioning nodes and resources. In order to pro-

vide for a type of "graceful degradation" when a functional

resource is determined to be inoperative, each node would be

required to support a secondary and passive LAN functional

resource. A passive secondary resource, as used in this thesis,

represents a functional resource which is fully duplicated at

an alternate node and which does not perform any user tasks

unless the primary functional resource becomes inoperative.

Figure 3.5 represents three possible methods of physically

implementing back-up functional resources to insure the

78



I

PRIMARY ALT. PRI M ARY T.
RESOURCE SEC. RESOURCE ALTE.

************ *************************************************

PRIMARY ALT.
RESOURCE SEC.

a. Primary and Alternate Secondary LAN Resource.

Mod Mo.Md. Md

Terminal 1 Peripheral
Manager J Manager**** *** *********************** *****************

DB
Manager

Mod. Mod.
A B

b. Tandem Parallel Processor Architecture.

Te[m. Term. Perip. Perip.
Mngr. Mngr. Mngr. Mngr.
A B A B

DB DB
Mngr. Mngr.

A B

C. Parallel Processing with Independent Processors.

Figure 3.5 Example LAN Functional Resource
Implementation.

79



reliability of overall A op eration=. :-iagrar , _ rimar-, and

Alternate Secondary LAN Resources, illustrates the use of a

single complete processor for each LAN resource which would

be designated as the primary functional resource. In addi-

tion, each complete processor, representing a node, would be

capable of supporting a secondary alternate LAN functional

resource, should the primary resource, at another node on the

LAN, become inoperative.

Diagram B, Parallel Processor Architecture, represents a

concept which is currently available in systems such as Tandem.

This type of architecture processes each user transaction in

parallel and performs intermittent checks to insure the con-

currency of results. In the event that a discrepancy should

exist between results or one of the processors should fail,

the. operational processor would continue to suppcrt LAN and

user functional requirements. Such systems generally provide

additional redundancy by double writing files which provides

additional back-up in the event that a previously written

record or file should become damaged.

Diagram C is an extension of the Tandem architecture, but

provides for the duplication of the LAN Transport mechanism.

In so doing, support of LAN resource requirements can be

achieved even in the event of the node connection to the LAN.

This thesis provides a Back-up and Recovery methodology for

the Primary and Alternate Secondary LAN Resource support but

is also applicable to the other two methodologies. By use of

80



passive secondary functional resource allccaticn and the

logging of the respective LAN messages, failed rescurces

could be reinitiated on an alternate operating LAN node,

once the determination of a failed resource is made. This

provides resource capability in depth, without requiring

complex load balancing and control in the case of multiple

copies of functional resources.

The requirements for the semi-vertical partitioning of

functional resources are that each secondary functional re-

source transport subsystem must, either directly or indirect-

ly, receive functional resource and user state information.

This resource and user state information could be attained

by the issuance of pertinent state information to the second-

ary functional resource node by the primary. The Session

Services Subsystem of the secondary must direct these messages

to a log or journal file for future reference. These files

would be used in bringing the secondary functional resource

on-line and designating it as the primary for the LAN. In

order for LAN functional resources to be able to determine

the operability of other LAN functional resources, each func-

tional node would randomly generate control query messages to

each primary functional resource, as indicated by their corre-

sponding resource directory. By selection of an appropriate

delta "t" for the receipt of a control acknowledgement, each

functional resource should be reasonably certain of the oper-

ability, or lack thereof, of each LAN functional node

81



and resource. Since the secondary functicna. . .." c-er -

ates in a passive role, there is no direct necessity for its

functional software to be resident while the functions are

being supported by the primary functional resource. Of prime

importance is the maintenance of user session messages and a

mechanism for the reconstruction of controlling session serv-

ices for users affected by inoperative LAN functional resources.

When exploring the idea of passive secondary functional

resources, there were two major problems encountered. First,

the reconstruction of the Controlling Session Services for

each verified user of the LAN has to be supported with a min-

imum of delay. Second, since message communication between

functional resources, in support of LAN users, is bound to be

extensive for interactive processing, there must exist a methcd

for the purging or masking of user and LAN resource messages

which do not change the state of the LAN resource or user

state information. To resolve these problems, the functional

resources must operate in an interactive fashion on both the

user to functional resource level and the functional resource

to functional resource level.

For the user of the LAN, it is assumed that the initial

interaction will occur between the user and the Terminal Man-

ager, via the Front End Manager. In the initial stages, user

verification and security procedures, along with terminal

support, i.e., terminal format characteristics, will be per-

formed prior to the establishment of a user's controlling

82



session service. It should be note. that the iront End Aar.aqer

acts as a gateway to the LAN and since all user messages are

vectored to the Terminal Manager, the ability to reconstruct

Controlling Session Services maintains the access security of

the LAN. Once the Terminal Manager has verified a user of the

LAN, it would generate a message to the secondary functional

resource, indicating the result of its interaction. In this

manner, the secondary resource would record only the atomic

results of the corresponding messages.

If the Terminal Manager were to assume responsibility for

providing the Controlling Session Service, then it would gen-

erate a message to the secondary resource indicating such

control and any coordinating or additional control information

established at the session services level. In so doing, should

th rerminal Manager become inoperative, the secondary resource

could be made current by use of the secondary resource journal

file without requiring the examination of sequential message

exchange between the user and the primary resource. Since the

secondary Terminal Manager is a duplicate of the primary, con-

taining user virtual terminal characteristics, only changes

need be identified in order to maintain the concurrency of the

user's virtual terminals. Once the terminal user either termin-

ates their LAN session or issues an "end virtual terminal"

message, transient terminal format modifications can be purged.

Only the results of message exchange between the primary re-

source and the user are of importance in making the secondary

83



resource reflect -he last recorded stte cf the .r:

resource. Controlling session services can be reconstructed

and user support maintained with a minimum delay. Cnce a

user session is terminated, the session messages can be trans-

ferred to a historical journal file. This permits optimiza-

tion of the performance of the active journal file, eliminating

the necessity for the maintenance of inactive user sessions.

The effect of user sessions in respect to the time depend-

ence of user transactions to other user sessions is of prime

importance in maintaining the accuracy of the LAN data base.

In terms of primary and secondary functions, the LAN data base

is duplicated at the secondary LAUN node and all future actions

which modify the primary data base must be maintained by the

secondary such that their effects can be duplicated in a manner

analogous to their actual effect on the primary. Read-only

transactions are mutually transitive in that the order in which

they are executed has no effect on the state of the data base.

Since read-only actions have no effect, there is no need to

maintain a record of them except to provide relatively recent

reference and historical accounting. Although both the primary

and secondary functional DBMSs have complete copies of the LAN

data base, the requirements for back-up and recovery encompass

many of the problems of a partitioned data base.

A recommended approach to ensuring the consistency of the

primary and secondary DB manager is to use a form of two-phase

84



commit, which was described by Jim Gray, Jr. of IBM [Refs.

12, 21]. Although the secondary data base manager would

record all recent message traffic by user UID, it would be

prohibitively costly for the secondary to apply each of these

against the secondary data base once the primary has failed.

By applying a type of time-stamp to each user transaction,

both the relationship of transactions to user UIDs and the

relative order of user transactions to the user session can

be maintained.

The atomic properties of user transactions can be main-

tained by using the primary Database Manager as the control

mechanism for data updates, coupled with time-stamps on user

messages. As the secondary records data base messages, the

primary coordinates the references of user messages to the

physical data base and applies the authorized actions. Once

an update to a data item has been applied, the primary Data-

base Manager sends a commit message to the secondary indicating

the user UID, start and stop time-stamps, and the results of

the user tiansaction on the data base. Upon receipt of the

commit message from the primary, the secondary would purge all

user messages encompassed by the start and stop time-stamp and

record the resulting value of the data base on the journal file.

This creates a type of partitioned journal file containing

Controlling Session Service information, ordered user messages

in time-stamp order and the resulting atomic properties of

applied user transactions, Figure 2.4.

85



Once the primary Database Manager is recognized as being

inoperative, the functional resource making the determination

must send a control message to the secondary Database Manager

with a time-stamp indicating the approximate time of fault

recognition. Upon receipt of this control message, the

secondary Database Manager would become resident, apply all

entries in the "modified data item log" to the data base, and

establish a Controlling Session Service for each user session

entry in the active "control session service log" of Figure

2.4. By using the time-stamp of the activating resource con-

trol message, the secondary Database Manager would determine

a reference point for each user entry in the active "message

log," and determine its application to the data base in the

same manner as that used by the primary Database Manager.

Once all references have been resolved, based upon the initi-

ating resource control message, the secondary Database Manager

would proceed to process all preceding user messages. Since

the state of the secondary is based upon the resolution of

references as determined by the time-stamp of the initiating

resource control message, this information must be retained,

i.e., recovery control data, along with a log of all subse-

quent data item updates for the re-establishment of the primary

Database Manager, once it becomes operational.

Once the failed primary Database Manager be-omes opera-

tional, an exchange of information must take place between the

primary and secondary prior to the assumption of Database

86



reponibiiities by the primary. The pri.ary Za~abas . -

ager would initially establish a checkpoint indicating the

last message acted upon prior to becoming inoperative. By

requesting the recovery control data from the secondary, the

primary would resolve any differences which may exist between

the secondary's view of the data base at the time of failure

and the actual state of the data base on the part of the

primary.

87



IV. CONCLUSIONS AID RECOMMENDATIONS

A. CONCLUSIONS

In reference to the design of a functionally fully distrib-

uted Local Area Network, little research of a practical nature

has been performed on LAN architectures. The fact that the

SPLICE LAN is designed to operate on a bus structure has fur-

ther narrowed the range of practical design and implementation

concepts available to the authors. Two primary problems

encountered in attempting to provide functional design speci-

fications were the vertical and horizontal partitioning of

functional modules within the LAN and the establishment of

acceptable protocols to enforce their interrelationships.

In order to provide the greatest degree of LAN flexibility

possible, this thesis attempted to incorporate a horizontal

partitioning of functional resource subsystems within verti-

cally partitioned functional modules. The horizontal parti-

tioning of the Transport, Session Services and functional

resource subsystems provides a means for future LAN expansion

of defined LAN resources without requiring a high degree of

modification to the existing LAN architecture. The horizontal

partitioning within each LAN functional resource and the dis-

tribution of a Session Services Subsystem ac:oss all nodes of

the LAN is also designed to provide a higher degree of LAN

reliability in the face of node failures. The continued

88



suppcrt cfr needs, in cit -f failed functicnal

resources, is considered to be paramount in the design of the

IAN. If the operability of the LAN can be terminated by the

failure of any single node, then the LAN has the potential to

be highly unreliable. It is through the use of vertical

partitioning that the reliability of the LAN design is in-

creased. Although it may be more desirable to isolate partic-

ular functions and have them performed by a single module, the

singular existence of that module, and its availability, may

result in the eventual failure of the LAN.

The discussion on back-up and recovery demonstrated the

complexity of providing a highly reliable system and was based

upon the existence of a uni-processor minicomputer at each

node. By use of a Tandem type system, the issues cf primary

and secondary functional resources would become almost trans-

parent to each other. Such a system would not only provide

for a highly fault tolerant and reliable system, but would

also eliminate many of the control structures necessary to

maintain the integrity of the LAN by implementing these control

structures in hardware components.

The Data Base and Terminal Manager subsystems identified

in this thesis present a description of their basic tools and

capabilities. Although the identification of a particular

DBMS was beyond the scope of this thesis, there exists a

variety of methods for its implementation on the LAN. Careful

consideration of the interrelationships between the Stock

89



zci:ntz _ d :ne,.-..* ?ztri C~ts shculd I. - e n the~ -_se

of any DBMS to support long range organizational objectives.

The Terminal Manager subsystem also presents a variety of

capabilities available for implementation on a LAN. Since it

is the terminal which provides the physical interface between

the users and the LAN, it must be capable of reflecting a

variety of user work environments.

B. RECOMMENDATIONS

It is recommended that the functional design of a LAN

provide the greatest degree of functional distribution while

providing for the vertical partitioning of subsystem functions

in order to provide a high degree of flexibility for future

growth. It is further recommended that a Tandem type system

be used to support the LAN functional resources, thereby

eliminating many of the control structures needed to maintain

the integrity of the LAN as a whole.

In that this thesis only provides a framework for further

functional design considerations, it is recommended that addi-

tional research be performed in the areas of security, manage-

ment of functional resources, load estimations upon each SPLICE

LAN, and the capabilities and practicality of using a high

level query language vice a high level programming language

for interactive data processing.

90



APPENDIX A: LOCAL AREA NETWORK HIPO-DOCUMENTATION

*-4 Al 4

4)0
u

73i 4)

u Q 0 ) 4

Q)4 < ccU;

4.1

Wu

10~ 0 u 0
0f -44 >

QQ4. ul 4)0 (

0 4J -I

V) Q.4

U~~ ~C cnk'AU)
<~~C U U)"

A ('4 ('M

91.



mo
cC.)

ON El C)

C.. C
-4 E-4

C4

4.)4

©>

°a
0

ri

>0 0 41 4

S10 z) -

0 .4 U4 a )

>

(4

CLC
4  

-

(1
C-i En OR-

.4 .4

.. 4 l nl l l.. ..

-4 4- .~-

(a > C,.4 92



C)4 - 1'4 uJ f

1

00

"-4 10

4 w Q)4.

U4 ---4,4 7 1>~
4. >

14 0N

W -4

-,4'

InC.

zH

14 93

En $4 J



V) 0 -4

-E-4

0 0J

-4 __ ____ ____ _____4 __

W -4 4J

-4, 4 4

00

", 0

4

C $4 a)~-

*-4.I 1 . Q) 0

94



I

C14 0 0 Z: -a

0) -4=0 W.4_

4 t A 4.0 - aV)>( W U $4 0 C/0 .O w -.C 4U)>

0 U~0 U M 0 ) n DrIU) m

CNinU C') in 5 5 fl

o :

4.

1.)

- 0-i

•.4 .>W$4

0 0

-H

41

-4 1-44 >.4

.. ~~~- .44

95



AD-A122 492 DATABASE AND TERMINAL MANAGEMENT FUNCT IDNAL DESIGN

SPECIFICATIDNS IN SiJPP..U) NAVAL POST GRADUATE SCHODL
MONTEREY CA d N REINHART ET AL. JUN 82

UNCLASSIFIED F/G 9/2 NL

OlU



W11. U I" J1

1II.8

$Q22 .II-4 1111116

MICROCOP RESOLUTiON TEST CHART



f-4 - Ico

c:, -M

0

c~ 0 4a)C

,,- 4 4 I 
"

0 0

6. -4 1;______________

E-4 z N

.. 0

96

'U * ~ I a
i ,~~~-, ' . . . . . .. . . .. . . . .. i I il 0ll *... .



A-j 4J r, -44 - M)
-. 0 -)a c)w A

E- in v 4 0 a) V -6 0 U Ol~CL" aC)F~ E-(

Q0'- a)~ '0 10 0 (

0 __---_------

0
(n,

C)C

Q)

U

0 14

-4 0

4.1 -4 Q j

0 *-4 C

.14 .,1 -

U)4>

di wJ at 0

0 0~0U2~

41

.47



.9

. 4 4.

C) a)4- 0

41- ) 4Z m

,4 x:

44 ul .- I Mq U),ua a

IWO 4 L. - r_ L

E) $4 a) W C 0 a
Cfl 414 cCo
U2r 0 - 0 44)~
Cfl -4) J)- 4

OA4.) *E44 4J'4 .

U)E (4 *0)'.

4) .000 0 ) IC

00) (02 $4 I&
'.4~~~~~4~ Il .S. .0 4)4 .0

0. Z4

-~ . I 98



03 0 -4 4

Ch 4)-4 0 u w ) N ) tr :3o
4 P4J - W 4 -, C) ,) 4  tn-m=

00

Q)>

$4 $ -

40

a). -4.-4 -

0 -

0 u0

do.0

0 *t - I: 4j r

CA$4w ri 44)-

99



u N

r-4
0 fa

3 --4-1

-4 m 41 g U"

C..4

0
..4 

.4

0 

-

U
1  

04 .0 41 a

00

en ar r ~
14U zJ P6 *

24~
t

o L - eU

10



w 0 0 ra

• ,44 -4 a) M

0

4.).

E 0

0 $

3. R ."

44>
04.0

M U,

0 0

000

, , ,

0

41>

u zu

cr
00

414 .-4
adJ

00

4..4..m

w & A 4.) 40E, 0 4M 10

-

OW((U. (aU04*)-

101



zn~

4. <

- - 7:.'

2.o .

44

3.-' .

C) C). *0

&n X

102

. . . . . . .. .. . . .. ] , l I fl l Il - . .. .



o

x i

CN

I- -01

C)N

.-4 .n

- =3

,/ 4j

.m

41 w~ 0
a 44

103 r "

C) m

C) Co,

.i... .-



~uc >.

I 0 4--j 4-

6-4 fl UW3 tZ

L= --

A)

U ) M)

I-i m 3 3 Z C
z -

0n w0C ~ 3
E 4 U

4 W )
04 IZ L

10



LIST OF REFERENCES

1. U.S. Navy Fleet Material Support Office, Envircnrnent
Division: Code 9441, Stock Point Logistics Integrated
Communications Environment (SPLICE), Scftware Design,
19 March 1979.

2. Fleet Material Support Office, Department of the Navy,
Document No. F94L0-001-9260-SS-SU01, Stock Point Locistics
Integrated Communications Environment (SPLICE) System
Specification, 2 February 1981.

3. Fleet Material Support Office, Department of the Navy,
Document No. F94L0-001-9260-FD-SU01, Stock Point Logistics
Integrated Communications Environment (SPLICE) Functional
Description, 1 May 1980.

4. Naval Supply Systems Command (Code 0415), Logistics Tele-
communications Branch, SPLICE Telecommunications Subsystem
Project Plan (TSPP), 9 March 1981.

5. Kroenke, D. Database Processing Fundamentals, Modeling,
Applications. Science Research Associates, Inc., 1977.

6. Martin, J. Design and Strategies for Distributed Data
Processing. Prentice-Hall, Inc., 1981.

7. Ullman, J.D. Principles of Database Systems. Computer
Science Press, Inc., 1980.

8. Kroenke, D. Database, A Professional's Primer. Science
Research Associates, Inc., 1978.

9. Appleton, D.S. Implementing Data Management, IEEE National
Computer Conference, 1980, p. 307-316.

10. McLeod, D. and Heimbigner, D. A Federated Architecture
for Data Base Systems, IEEE National Computer Conference,
1980, p. 283-289.

11. Sincodkie, W.D. and Farber, D.J. "SODS/OS: A Distributed
Operating System for IBM Series/i," Association for Com-
puting Machinery, Vol. 13, No. 3, p. 46-54, July 1980.

12. Mayer, P.S. Alternative Architectures for Distributed
Data Sharing: Functional Issues, IEEE 1980 Computer
Conference, Fall, p. 371-377, 1980.

105



13. Lunn, K. and Bennect, K.t .tAn A-Corii I for RescuC e
Location in a Loosely Linked Distributed Computer System,"
Association for Computing Machinery, Cperating System
Review, Vol. 15, No. 2, p. 16-20, April 1981.

14. Nessett, D.M. "Identifier Protection in a Distributed
Operating System," Associaticn for Computing Machinery,
Operating System Review, Vol. 16, No. i, p. 26-31, January
1982.

15. Tanenbaum, A.S. "Network Protocols," Association for
Computing Machinery, Computing Surveys, Vol. 13, No. 4,
p. 453-489, December 1981.

16. Association for Computing Machinery, Vol. 15, No. 3,
Report on the Fundamental Issues in Distributed Ccmputinq,
July 1981.

17. Mooney, J.D. "USIM: A User Interface Manager," Associa-
tion for Computing Machinery, Overating System Review,
Vol. 16, No. 1, January 1982.

18. Kohler, W.H. Overview of Synchronizaticn and Recovery
Problems in Distributed Databases, IEEE 1980 Computer
Conference, Fall, p. 433-441, 1980.

19. Garcia-Molina, H. Reliability Issues for Completely
Replicated Distributed Databases, IEEE 1980 Computer
Conference, Fall, p. 442-449, 1980.

20. Colliat, G. GCOS 8: A Distributed Processing Model,
IEEE 1980 Computer Conference, Fall, p. 494-504, 1980.

21. Gray, J. Jr. Notes on Database Operating Systems, IBM
Research Laboratory, San Jose, California, Summer 1977.

22. Lorin, H. Aspects of Distributed Computer Systems.
John Wiley & Sons, Inc., 1980.

23. Lantz, K.A. and Rashid, R.F. A Virtual Terminal Manage-
ment System for RIG, Computer Science Department, University
of Rochester, New York, May 1979.

24. Martin, J. Computer Networks and Distributed Processing.
Prentice-Hall, 1981._ "

25. Davies, D.W., Barber, D.L.W., Price, W.L., and
Solomonides. Computer Networks and Their Protocols. John
Wiley and sons, Inc., 1980.

26. Hillsberg, B.L. "Generic Terminal Support,"Association for
Computing Machinery, Operating System Review, Vol. 15, No.
2, April 1981.

106

L rr



INITIAL DISTRIBUTION LIST

NO. Copies

1. Defense Technical Informatior. Center
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 54
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93940

4. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. Prof. Norman F. Schneidewind, Code 54SS
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93940

6. Ist Lt. Joseph N. Reinhart III, USMC 3
Marine Corps Development and Education Command
Quantico, Virginia 22134

7. Lt Ricardo Arana Courrejolles 3
Ministerio De Marina
Central De Procesamiento De Datos

De La Marina De Guerra
AV. Salaverry S/N
Lima, Peru

8. Lt Eduardo Bresani Torres
Ministerio De Marina
Central De Procesamiento De Datcs

De La Marina De Guerra
AV. Salaverry S/N
Lima, Peru

107



9. Lt javier De La Cuba
Ministerio De Marina
Direccion De Abastecimiento Naval
AV. Salaverry S/N
Lima, Peru

10. Lt. Jan Adams, USN
SMC 41942
Naval Postgraduate School
Monterey, California 93940

!I. LCDR Jerry Barnes, USN
SMC #2542
Naval Postgraduate School
Monterey, Califcrnia 93940

12. LCDR Kathleen Barrett, USN
SMC #1087
Naval Postgraduate School
Monterey, California 93940

13. Lt. Sharon Crowder, USN
SMC #2518
Naval Postgraduate School
Monterey, California 93940

14. Capt. Craig Opel, USMC
SMC #1322
Naval Postgraduate School
Monterey, California 93940

15. Ing. Oscar Brain Canepa
Burroughs Del Peru
Au Republica De Chile 284
Lima, Peru

16. Capt. Peter L. Jones, USMC
Marine Corps Central Design and

Programming Activity
Marine Corps Development and Education

Command
Quantico, Virginia 22134

17. Major John Mastrocostopoulos
DDB/GES
BST 902
Athens, Greece

108



Marine Corps Representative
Naval Postgraduate School
Monterey, Califcrnia 93940

19. Prof. Norm Lyons, Code 54Lb
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93940

109



S1


